总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总结了。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下是小编收集整理的工作总结书范文,仅供参考,希望能够帮助到大家。
人脸识别工作总结篇一
中文名 人脸识别技术 实 质
输入的人脸图象或者视频流 研究领域
热门的计算机技术研究领域 技 术
生物特征识别技术
1基本介绍
2技术原理 ▪ 人脸识别内容 ▪ 人脸的识别过程 3分析算法
4功能模块
▪ 人脸捕获与跟踪功能 ▪ 人脸识别比对 ▪ 人脸的建模与检索 ▪ 真人鉴别功能 ▪ 图像质量检测 5基本方法
6技术细节 7优缺点
▪ 人脸识别优点 ▪ 人脸识别的弱点 8技术应用
9应用前景
人脸识别工作总结篇二
人脸识别总结
90年代中后期,出现了一种基于动态连接结构(dynamic link architecture)的弹性图匹配(elastic graphmatching)识别方法。 90年代末支持向量机被应用到人脸识别技术中。
主要分为:等距离映射_(isometrical mapping,简称 isomap)、局部线性嵌入(locally linearembedding,简称lle、拉普拉斯算子特征映射(laplacian eigenmaps)、拉普拉斯脸(laplacianface)方法。基于拉普拉斯belkin m等提出局部投影(lpp)方法。近期算法包括: 基于稀疏表示的人脸识别方法(sparserepresentation recognition, src)针对此识别方法还出现了较多的改进模型,典型的有
基于gabor的稀疏表示 基于metaface的稀疏表示等
基于统计方法 基于几何方法
主成分分析(principal component analysis, pca)是一种典型的数据处理和数据降维方法
sirovich和kirby首先研究人脸降维过程,采用基于镜像脸的技术 提出了基于pca表示的特征脸的概念
fisher线性判别方法也是人工智能和模式识别领域中的重要方法之一
foley和sammon提出了基于sammon最佳鉴别平面的技术
duchene和leclercq提 出了针对多类问题的foley-sammon最佳鉴别矢量集的求解公式
turk和pentland提出了基于特征脸的特征提取方法 kittler又提出了基于fisher鉴别准则的提取面部特征方法 hong和yang提出了采用svd进行特征提取方法 cheng等改进并提出了一种新的相似性鉴别准则
liu等提出了基于最佳鉴别广义平面和最佳鉴别广义矢量集的一系列特征提取方法 郭等在此基础上提出了改进的最佳鉴别矢量方法 吴等又改进了广义最佳鉴别矢量方法 基于模型的特征提取方法
ka等首次提出了主动轮廊线模型(active contour model,acm), acm也被称为snake模型
lee等提出了一种改进snake模型的方法,改进方法是由正面和侧面结构化特征来对面部进行特征点定位
基于统计参数化模型的主动形状模型(active shape model, asm) 优势在于它不仅能有效地定位和提取目标物体的外部轮廓信息,而且能提取目标物体的内部轮廓和形状特征
cootes等在asm基础上提出了主动表观模型(active appearancemodel,aam)
人脸识别工作总结篇三
(1)心理学家梅尔贝因给出了一个公式:
感情表露=7%的言词+38%的声音+55%的面部表情,通过研究人脸表情,我们可以大致了解一个人的内心情感。
(2)6种基本情感类别:惊奇、恐惧、厌恶、高兴、愤怒、悲伤
(3)目前存在的缺陷:特征提取的方法存在一些缺陷;某些表情易于识别,某些表情不易识别,心理学方面的研究认为,最容易辨认的是快乐、痛苦,较难辨认的是恐惧、悲哀,更难辨认的是怀疑、怜悯
(4)应用前景:①安全领域:表情识别可用于核电站的管理和长途汽车司机等着重强调安全的工作岗位。在岗者一旦出现疲劳、瞌睡的征兆,识别系统及时发出警报避免险
情发生。②医疗领域:表情识别还可用于机器人手术操作和电子护士的护理。可根据患者面部表情变化及时发现其身体状况的变化,避免悲剧发生。③电脑游戏:如果游戏可以根据游戏者的喜、怒、衷、乐来做出实时的反应,那么这样的游戏肯定比那些传统规定好规则的游戏更加吸引人。
人脸识别工作总结篇四
语音识别技术的原理和应用
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。
音频二维码 音频二维码技术
音频二维码技术采用仿生学技术,利用声音实现文件的快速传输。采用跨平台的技术,实现手机、电脑、智能机顶盒等智能设备间的图片、文字、链接的传输。音频二维码技术能在一定程度上取代图像二维码、近磁场传输和蓝牙等技术。
2012年底蛐蛐儿创始人朱连兴开发了一套音频二维码的引擎,名字叫蛐蛐儿sdk。在朱连兴推出了蛐蛐儿sdk之后,音频二维码的开发也变的比以前更加快速和简单。蛐蛐儿通过声音传输的不是文件,而是在发送端生成一个四位的二进制数。这四位二进制数是待发送文件的id。发送端向接收端发送的其实只是上述生成的id。发送端在向客户端发送id的同时向云端发送id和数据。在接收端接收到id后,通过该id向云端获取对应的数据。
音频二维码应用
音频二维码的应用非常广泛。音频二维码通过声音传递信息。广播和电视也通过声音传递信息。如果结合音频二维码技术和广播电视技术,将使二者相得益彰。音频二维码可以使广播电视用户不再是单一的受众,也是参与者。通过音频二维码可以让用户的手机等终端设备接入电视屏幕或者广播。用户在欣赏电视节目或者收听广播节目的同时,也可以通过手持终端参与节目互动环节。这会在给用户带来更好体验的同时,拉动广播电视行业的收视率和收听率。
例如在非诚勿扰的节目播放结束时,孟非不需要说那么长的一串话让观众知道如何来报名参加非诚勿扰,只需要说“欢迎在听到嘀声后报名参加非诚勿扰”就可以了。观众的终端在听到嘀声后解析相应的内容,获取到报名所需要的电话号码和电子邮箱。观众可以任选一种进行报名。这样观众再也不需要拿笔和纸去记录这些信息了。
观众在观看好享购频道的时候,在一个节目结束的时候插入一个声音。观众的手机在听到这个声音后自动解析购买此商品的号码,用户按拨号键就可以直接购买自己想要的商品。使用了音频二维码技术,用户便从对着电视屏幕记录购买号码中解脱出来了。
不像电视技术同时通过声音和画面来传递信息,广播技术只能通过声音来传递信息。所以在广播行业中,尤其需要其它的手段让听众接收信息。在这个需求下,音频二维码技术变得尤为重要。
人脸识别工作总结篇五
人脸识别技术是什么原理
1面像识别原理
人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。人脸识别是一项热门的计算机技术研究领域,可以将人脸明暗侦测,自动调整动态曝光补偿,人脸追踪侦测,自动调整影像放大;它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。人脸识别技术一般包含三个部分:人脸检测、人脸跟踪、人脸比对(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:①参考模板法;首先设计一个或数个标准人脸的/ 6
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法”。这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
一般分三步:
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹编码贮存起来。(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
人脸是人类情感表达和交流的最重要、最直接的载体。通过人脸可以推断出一个人的种族、地域,甚至身份、地位等信息;人们还能通过人脸丰富而复杂细小的变化,得到对方的个性和情绪状态。科学界从计算机图形学、图像处理、计/ 6
算机视觉、人类学等多个学科对人脸进行研究。最早的人脸识别技术的研究可以追溯到20世纪50年代,当时的研究人员主要涉及的是社会心理学领域;到了60年代,开始有一些工程文献陆续发表出来;但是,真正的自动人脸识别的研究是从20世纪70年代开始的,当时采用的技术基本上都是典型的模式识别技术,例如利用脸部重要特征点之间的距离进行分类识别。随着计算机技术的发展,从80年代到90年代初期,人脸识别技术得到了很大的发展并进入了实际应用领域。在这一阶段,基于人脸外貌的统计识别方法得到了很大的发展,其中在大规模的人脸数据库上进行的实验得到了相当不错的结果。同时,基于人脸特征的识别方法也逐渐发展起来,此类方法对光线和视角的变化、人脸的定位都不太敏感,有利于识别率的提高,但是其采用的特征提取方法还不够成熟和可靠。
90年代后期,一些商业性的人脸识别系统逐渐进入市场;近几年来人脸识别作为计算机安全技术在全球范围内迅速发展起来,特别是美国遭受“9·11”恐怖袭击以后,人脸识别技术更引起了广泛的关注。在这一阶段,更多的研究集中在基于视频的人脸识别上面。人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人的身份验证、社会保险人的身份验证等具有重要的应用价值;在家庭娱乐等领域,人脸识别也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人、具有真实像的虚拟游戏玩家等。
研究人脸识别在理论和技术上都有重要的意义:一是可以推进对人类视觉系/ 6
统本身的认识;二是可以满足人工智能应用的需要。采用人脸识别技术,建立自动人脸识别系统,用计算机实现对人脸图像的自动识别有着广阔的应用领域和诱 人的应用前景。同时人脸识别作为一种生物体征识别与其它较成熟的识别方法(如指纹、虹膜、dan检测等)相比有以下几个优点:①无侵犯性,人脸图像的获取不需要被检测人发生身体接触,可以在不惊动被检测人的情况下进行;②低成本、易安装,人脸识别系统只需要采用普通的摄像头、数码摄像机或手机上的嵌入式摄像头等被广泛使用的摄像设备即可,对用户来说也没有特别的安装要求;③无人工参与,整个人脸识别过程不需要用户或被检测人的主动参与,计算机可以根据用户预先的设置自动进行。
人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更加深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更加准确地逼近这些问题的正确答案。/ 6
读书的好处
人脸识别工作总结篇七
人脸识别综述
王军军
(西安交通大学,西安,710086)
摘要:人脸识别已成为多个学科领域的研究热点之一,本文对人脸识别的发展历史、研究现状进行了综述,系统地对目前主流人脸识别方法进行了分类针对人脸识别面临的挑战,着重对近几年来在光照和姿态变化处理方面的研究进展进行了详细沦述,并对未来人脸识别的发展方向进行了展望。
关键词:人脸识别,人脸检测,模式识别
人脸识别研究在二十世纪六七十年代引起了诸多学科领域研究者的浓厚兴趣。进人九十年代后,随着各行业对人脸识别系统的迫切需求,人脸识别研究再次成为热门课题。当前世界各国有许多研究机构在从事这方面的研究,这些研究受到军方、警方以及大公司的高度重视和资助[6]。美xxx方还专门组织了人脸识别竞赛以促进人脸识别研究的发展。经过三十多年的研究,人脸识别已经成为图像分析与图像理解领域最成功的应用之一研究人员提出了很多识别方法,建成了一些实验系统,也有一些成功的人脸识别商业软件投人市场。
人脸识别作为模式识别的一种,一般可以分为三个组成部分:从场景中检测并分割人脸;抽取人脸特征;匹配和识别人脸[7]。由于人脸检测已经发展成为一个独立的课题,具有特定的思想和方法,所以本文假定人脸已经被正确检测并从场景中分割出来。
人脸识别工作总结篇八
浅析人脸识别在金融行业应用方向
2015年年末,央行发布了《中国人民银行关于改进个人银行账户服务加强账户管理的通知》,明确提出“提供个人银行账户开立服务时,有条件的银行可探索将生物特征识别技术和其他安全有效的技术手段作为核验开户申请人身份信息的辅助手段”。至此,这两年火遍天际的人脸识别终于得到了“正式名份”!将在银行大显身手的人脸识别到底能做什么?备受银行青睐的人脸识别真有那么“万能”吗? 目前人脸识别在银行的应用主要集中在自助终端、移动金融/营销和柜面系统三大方向。
“人脸识别”自助终端
“人脸识别”自助终端是当前银行应用最为普遍的方向,交通银行的自助发卡机、民生银行的vtm、农业银行的超级柜台等都是将人脸识别系统引入到自助设备中,利用人脸识别技术将现场采集的照片与已存照片、身份证照片进行比对并提供人脸相似值,工作人员即可根据相似值的高低判断是否直接通过或进行人工审核。
目前,用户可以在自助终端上实现自助开卡、业务变更、密码重置等个人业务,全流程电子化不仅节约时间和成本,也更加环保。不仅如此,银行工作人员也可以通过人脸识别自助终端实现一对多服务,通过客户自助办理+现场审核授权,原本只能服务一个客户的工作人员可以同时服务6-8人。
移动金融/营销
银行在开展移动金融/营销时,也经常遇到一个难题:在移动端如何确认客户身份?而人脸识别则可以较好的解决虚拟世界两端“你是谁”的身份认证难题:一方面用户可以借助于手机等移动设备的摄像头进行人脸身份核查,另一方面银行工作人员也可以通过便携性移动终端进行客户人脸身份核查,为客户办理业务。目前包括民生银行、攀枝花商行在内的众多银行已经开始基于多模态生物识别统一身份认证平台,通过人脸识别技术平台布局移动金融和移动营销:直销银行、远程贷款、大客户上门服务等都是典型应用。与此同时,该平台还具有强大的渠道管理能力,一旦前端出现报错情况,可以迅速反查、定位并进行修复。
柜面系统
人脸识别工作总结篇九
人脸识别技术应用在铁路系统
智能人脸识别技术的功能,主要体现在以下几个方面:
其它监控的功能,主要是前段使用摄像机或云台和编码器配合使用,实现数字化传输和存储。主要监控一般性场所。
华天成人脸识别技术功能特点: 1.监视和录像功能
监控中心、铁路站运行维护人员通过业务台或监控主机对站内监控范围的目标区域中设备或现场进行监视,同时在业务台或监控主机上完成对前端设备的控制(左右、上下、远近景、调焦等),画面切换的控制和录像控制。
监控中心可通过系统的浏览功能查看监控中心或下属的管理的录像或图片。
2.报警功能
报警类别:消防报警、防盗报警、动态检测、智能分析报警系统实现告警录像,同时传送报警信息和相关图像至监控中心,并自动在地理区域图上或相关表格进行提示,显示报警的内容和具体位置。
系统告警时能联动相关设备,如灯光、警笛等。当发生报警时,能把报警信息发送到指定的移动电话上。
3.控制功能
人脸识别工作总结篇十
人脸识别相关技术
分析报告
2015年10月
目 录
第一章 分析概述...........................................................................................................................................2
(1)人脸识别专利申请趋势分析......................................................................................................4
(2)技术生命周期..............................................................................................................................5(3)人脸识别技术构成......................................................................................................................6(4)人脸识别竞争对手分析..............................................................................................................7
(1)人脸定位技术路线....................................................................................................................8(2)图像获取技术路线....................................................................................................................9(3)人脸跟踪技术路线....................................................................................................................10 第一章 分析概述
人脸检测识别技术是基于人脸特征来进行身份识别的技术。与其他识别方式相比,由于人脸始终暴露在外面,采集人脸特征有直接、友好、方便的特点。现在,国际银行组织、国际民航组织的生物特征识别护照的标准中明文规定必选的特征是人脸,可选的特征是指纹、虹膜或者在其它特征中任何一种。目前我国公民的第二代身份证有嵌入可机读的人脸图像信息,这也为下一步人脸识别广泛应用打下有利的基础。
上世纪九十年代以来,人脸检测识别技术研究达到了高潮时期,一批具有代表性的论文和算法产生,自动人脸识别技术也得到了长足的发展,相关机构组织了如人脸手势识别等专门的国际学术会议。另外,现在很多的研究型理工大学和兀公司都在着手人脸检测识别研究。领域内最著名的国际研究机构包括:美国麻省理工学院媒体实验室及人工智能实验室、南加州大学、马里兰大学、卡内基一梅隆大学机器人研究及交互系统实验室等。在我国,清华大学计算机系、电子系瞻嘲、中科院自动化所阳吲、南京理工大学、南京航空航天大学、哈尔滨工业大学等进行了许多很有意义的尝试,积累了经验。国内的研究工作主要是集中在三大类方法的研究:基于几何特征的人脸识别方法、基于代数特征的人脸识别方法和基于连接机制的人脸识别方法。人脸识别由于具有直接、友好、方便的特点,使用者无任何心理障碍,易于被用户所接受,从而得到了广泛的应用。主要在以下几个方面:(1)档案管理系统(2)安全验证系统(3)信用卡验证(4)公安系统的罪犯身份识别(5)银行和海关的监控(6)人机交互等。
人脸识别系统包括:(1)人脸图像的获取(2)人脸的检测(3)特征提取(4)基于人脸图像比对的身份识别(5)基于人脸图像比对的身份验证
本分析对人脸识别相关专利进行了中国专利检索,检索采用国家知识xxx专利数据库,以该专利数据为基础对其相关技术进行了分析,以期能从战略层面为汉柏的技术研发、专利布局和专利风险预防提供借鉴参考。
具体分析项如下:(1)专利申请趋势分析(2)技术构成(3)竞争对手分析(4)技术路线图分析
第二章 人脸识别专利态势及技术研发分析
第二章 人脸识别专利态势及技术研发分析
截至报告检索完成日期,共检索得到人脸识别公司专利3516件。我们以此3516件专利作为基础进行人脸识别技术专利态势技术及研发分析,包括专利申请趋势分析、技术生命周期、技术构成、发明人分析、竞争对手分析等,由此获取人脸识别技术发展情况,为汉柏的科研和决策提供参考。
(1)人脸识别专利申请趋势分析
图表 1 人脸识别专利申请趋势
图表1显示了人脸识别专利申请趋势。如上图所示,自1995年起首次出现人脸识别相关专利申请,1995-2004年期间专利申请量发展平稳,增长率不大,自2005年起该领域专利申请量呈快速增长,2010年后呈爆发式增长。
应注意的是,受到报告截止的统计时间的影响,2015年的数据必然不是最终数据,仅起到一定参考作用,以下情况相同,不做另述。
第二章 人脸识别专利态势及技术研发分析
(2)技术生命周期
分析人脸识别相关技术的申请人数量及专利申请数量随时间分布,可分析该技术生命周期发展情况。
图表 2 人脸识别专利申请趋势
1995-2005年为该技术发展起步阶段,申请人及申请量都较少,2005-2014年为该技术发展的成长阶段,申请人数量及申请量均迅猛增长,2015年之后,将陆续有专利超过保护期限而失效,行业壁垒逐渐减少,可能竞争会更加激烈。
第二章 人脸识别专利态势及技术研发分析
(3)人脸识别技术构成分析人脸识别相关技术的技术构成,可以看出该的技术发展的热点。
图表 3 人脸识别重点技术随时间分布图
图表2显示了人脸识别技术构成前10位技术领域的ipc和专利量。人脸识别的技术构成主要集中于:g06k 数据识别;数据表示
第二章 人脸识别专利态势及技术研发分析
(4)人脸识别竞争对手分析
通过对该技术申请人统计分析,可以找到掌握该技术最重要的竞争对手。
图表4 人脸识别技术重要竞争对手
图表4显示出掌握该技术专利数量最大的几个申请人,主要以应用类产品研发的公司及研究型大学为主。
第二章 人脸识别专利态势及技术研发分析
(1)人脸定位技术路线
第二章 人脸识别专利态势及技术研发分析
(2)图像获取技术路线
第二章 人脸识别专利态势及技术研发分析
(3)人脸跟踪技术路线
读书的好处
人脸识别工作总结篇十一
人脸识别xxx通道管理系统
人脸识别技术简介
随着高科技的蓬勃发展,人体特征分析技术已经作为身份快速识别及视频监控等领域的最新增值点与应用点,在身份识别、智能安防、智能监控、出入管理、证卡认证等方面发挥巨大作用。
面部检测识别技术,是利用计算机图像分析、模型理论、人工智能及模式识别技术的非接触性高端模式识别技术,其可完成从复杂的图像场景中检测、检出特征人像信息,并进行匹配识别的智能分析过程。
面部识别的流程如下图所示:
人脸识别xxx通道管理系统
络化、信息化、数字化方向快速发展。数字化xxx通道管理系统的建设可由视频监控、人像识别、出入口管理、周界报警、巡更管理、监舍对讲和进出通道管理、服狱人员定位等几部分组成。
而xxx通道出入人员身份快速识别及看守所安全方面的管理要求,具备非接触特点的人像生物特征识别技术,可以依靠常规的视频图像获取设备快速进行人员身份识别及陌生人预警等功能,满足xxx、看守所等特殊场所的管理要求及安全管理要求。场所现状及人脸识别需求:
滚闸门1滚闸门3出卡机进门闸门4b门出a门进值班室值班民警(还卡处)b门进滚闸门2a门出出门
xxx/看守所通道示意图
第1页 /共 12页
人脸识别xxx通道管理系统
人脸识别工作总结篇十二
人脸识别技术发展及应用分析
人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机采集人脸图像,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术处理,包括人脸图像采集、人脸定位、人脸识别预处理、记忆存储和比对辨识,达到识别不同人身份的目的。
市场现状
人脸识别技术的研究始于20世纪60年代末期。20世纪90年代后期以来,一些商业性的人脸识别系统逐渐进入市场,但是,这些技术和系统离实用化都有一定距离,性能和准确率也有待提高。
美国遭遇恐怖袭击后,这一技术引起了广泛关注。作为非常容易隐蔽使用的识别技术,人脸识别逐渐成为国际反恐和安全防范重要的手段之一。近年来,人脸识别在中国市场,也经历着迅速的发展,而且发展的脚步也越来越快。主要原因有以下两方面。科技的进步
国际上,美国标准与技术研究院(nist)举办的face recognition vendor test 2006,通过大规模的人脸数据测试表明,当今世界上人脸识别方法的识别精度比2002年的frvt2002至少提高了一个数量级(10倍),而对于高清晰,高质量人脸图像识别,机器的识别精度几乎达到100%。在我国,近年来科技界和社会各个方面都认识到人脸识别技术的重要性,国家政策对人脸识别技术研究给予了很大支持,使得我国人脸识别技术也得到了迅速的发展。应用需求的增加
越来越趋向于高科技的犯罪手段使得人们对各种场合的安全机制要求也近乎苛刻,各种应用需求不断涌现。人脸识别市场的快速发展一方面归功于生物识别需求的多元化,另一方面则是由于人脸识别技术的进步。从需求上来说,除了传统的考勤、门禁等应用外,视频监控环境下的身份识别正成为一种迫切的需求,即在一个较复杂的场景中,在较远的距离就识别出特定的人,这显然是其它生物识别方法所欠缺的,而人脸识别却是一个极佳的选择。技术历程
国家“十一五”科技发展规划将人脸识别技术的研究与发展列入其中,明确指出:“要在生物特征识别技术领域缩小与世界先进水平的差距,开展生物特征识别应用技术研究,开发具有高安全性、低误报率的出入口控制新产品。”在这种环境下,国内一些科研院所和院校在人脸识别技术方面取得了很大进展。如中科院自动化所,清华大学,中科院计算所自主开发的人脸识别技术已经达到了国际先进的水平。
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们最熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但目前这两种技术还远不成熟,识别效果不尽人意。
最近迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。[nextpage] 可见光人脸识别技术
可见光是光谱中人眼可以感知的部分,可见光谱没有精确的范围,一般人的眼睛可以感知可见光的波长在400到700纳米之间。作为可为人眼感知的光源,也是生活中最常见的光源。因此,传统的人脸识别技术主要基于可见光图像的人脸识别,这也是人们最熟悉的人脸识别方式。
为了克服受环境光照的影响,学术界做了大量的研究和技术开发。对可见光人脸识别系统进行了大量改进,以减轻环境光照的影响,目前也取得了一定的进步。
多光源人脸识别技术
在自然界中,除人眼可见的光线外,还存在着红外、紫外等不可见的光线。为了克服可见光因环境因素而变化的影响,相关企业做了大量的研究和技术开发。基于红外与可见光融合的多光源人脸识别方法是人脸识别技术的一项革命性创新,目的在于消除可见光变化对人脸识别的影响。
可见光图像受光源影响较大,而单纯的红外图像可以独立光源,但对温度变化比较敏感,而红外与可见光融合的多光源人脸识别方法,被证明比任意单一光源的识别更有效。它是一种基于融合红外与可见光图像的人脸识别方法,对红外与可见光人脸图像分别采用pca与线性辨别分析相结合的方法进行特征提取和识别,并利用获得的识别结果与它们各自的置信度进行决策融合,并确定最终的人脸识别结果。实验表明,可以有效提高人脸识别性能和对各种应用环境的适用性。技术优势
人脸识别较之于其它生物识别技术,在社会公共安全领域的应用,具有更明显的优势。
首先是其自然性,该识别技术同人类(甚至其它生物)进行个体识别时所利用的生物特征相同。例如脸部识别,人类也是通过观察比较人脸区分并确认身份的,另外具有自然性的识别还有语音识别、体形识别等,而指纹识别、虹膜识别等都不具有自然性,因为人类或者其它生物并不通过此类生物特征区别个体。
其次是其不被察觉性,不被察觉对于一种识别方法也很重要,这会使该识别方法不令人反感,并且因为不容易引起人的注意而不容易被欺骗。人脸识别具有这方面的特点,它完全利用可见光获取人脸图像信息,而不同于指纹识别或者虹膜识别,需要利用电子压力传感器采集指纹,或者近距离采集虹膜图像,这些特殊的采集方式很容易被人察觉,从而更有可能被伪装欺骗。这一特点特别适用于逃犯跟踪系统。
人脸识别工作总结篇十三
银行人脸识别运用
人脸识别安全性更高
人脸识别技术上划分为1:1比对和1:n比对,对于银行可采用智能卡与人脸识别1:1比对方式相结合,其优势是双重的验证机制。首先需要智能ic卡或者id卡验证,验证通过之后,进行人脸识别验证,人脸识别验证通过之后,才能开门。与单纯的采用智能卡的门禁系统相比,安全性更高,适合银行这样的高安全性场所使用。根据目前银行营业厅等重要场所的实际情况,可以设计安全通道门,由两道带人脸识别装备的防盗门、一台两门联动控制器等组成。
其工作原理是:首先在管理系统中注册人员,注册时每人分配一张ic卡或者id卡,将人员的注册信息和人员图像注册到联动控制器中。以从公共区进入安全区为例,正常使用时,当人脸在门1的人脸识别上验证时,首先联动控制器查询门2是否闭合,如果门2处于开启状态,则拒绝在门1处进行验证,只有当门2闭合,才允许启动验证。
验证时,先刷卡,同时人脸识别摄像头会捕获一张图像,将卡号信息和图像传输至联动控制器中,控制器根据卡号信息找到注册时的图像,与捕获的图像进行比对识别,比对通过则控制器控制电锁开启,关上门1,在门2处重复上述的验证步骤。
在一些特殊情况下,比如卡丢失,员工需要进行挂失,重新补卡才能使用该系统;如果是有入侵者胁迫开门的情况,员工会使用胁迫开门功能,同时向后台管理系统报警,监控中心的人员在管理系统的实时监控中获取警情,可以采取相关报警动作;如果是多人脸识别,系统允许一定时间内,多人相继验证通过,系统才会开门。智能化管理
通过管理电脑对进出人员的权限,进出时间以及进入方式进行管理。并同时存储相应数据,以备事后查询。多人脸识别开门功能
在重要的区域,系统可以设置同时多个人脸识别(两人以上)才能开门的方式,即打开一道门要有多人同时在规定时间内通过人脸识别验证后,门才能打开。优势
综上所述,使用本方案有以下几个方面的优点。第一,使安全防范级别得到有效提升。
在原有智能卡门禁系统上融入人脸识别技术,可有效防止盗取他人智能卡或者监守自盗现象的发生,是原有出入控制系统安全防范级别的有效提升。第二,能与cctv系统无缝结合。随着人们安防要求的逐渐提高,cctv系统早已成为银行安防系统中的重要环节。本系统无须另添加任何其它设备即可与银行原有的cctv系统无缝结合。本方案所述的人脸识别门禁系统还设计有一些通讯接口,可以和视频监控系统进行通讯。比如,在发生胁迫报警时,可以通知视频监控系统,使其调整监控画面,更方便观看现场的情况等。第三,灵活的事件处理和报警联动。
本系统可以与其它报警系统联动,对各种异常事件,如非法读卡,开门超时,门锁损坏,强行进入等,可根据用户实际需求设定相应的报警处理和提示,以确保安全防范区域的安全可靠,并对犯罪分子具有极大的威慑作用。结语
近些年来,人脸识别技术虽然取得了很大的发展,但是用户担心识别精度还是会受到光照、姿态、表情、伪装等因素的影响,正缘于此,他们在选用人脸识别产品上会有一些担心与顾虑,可喜的是,人脸识别技术的算法已越来越具鲁棒性(鲁棒性,在此指人脸识别算法的健壮性,减弱外界的光照,姿态,表情等因素对人脸识别的影响),再采用红外成像等手段,可以提升识别精度,使得人脸识别产品真正应用起来。
出入口控制作为安全防范系统中的重要环节,直接影响着整个系统内部的安全。目前,较为成熟的门禁解决方案是卡片或者卡片加密码的模式,但一旦卡片丢失或者密码遗失,对整个系统的安全就构成很大威胁或者对用户的使用造成不便。而人脸识别门禁系统用人脸作为“钥匙”来开门明显安全性更高,并且具有受场地环境影响小、识别准确率高、识别速度快、结果直观等优点,已经越来越受到广大客户的重视。

一键复制