人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
加法交换律和结合律教学后记篇一
加法的交换律和结合律一课属于数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。
新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。
片断一:
师:谈话:天气渐渐凉了,我们学校又要组织大家进行冬锻炼比赛了,冬锻炼比赛有些什么项目呢?看,同学们正在紧张的训练呢。
根据学生的回答,板书:1、参加跳绳活动的有多少人?
2、参加活动的女生有多少人?
3、参加活动的一共有多少人?
……
【反思】
从课堂的引入老师就以最贴近生活的冬季锻炼比赛为题,一下子激起了学生学习的“兴奋点”,学生提出了很多加法问题,从而很自然的进入了后面的学习。
片断二:
下面我们先来解决第一个问题,求跳绳的有多少人,怎样列式计算?
指名口答,教师板书:28+17=45(人)
追问:还可以怎样列式?在学生回答后,教师完成板书:17+28=45(人)
这两个算式都是求的什么?它们的结果怎么样?那你能用一个符号把他们连接起来吗?(等号)板书:28+17=17+28,这是一个等式,我们一起来读一读。
【反思】
在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。
新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。
加法交换律和结合律教学后记篇二
1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
理解并掌握加法交换律和加法结合律,能用字母来表示。
经历探索加法交换律和结合律的过程,发现并概括出运算规律。
多媒体课件
一、谈话导入,鼓励猜想
1、出示图片牛顿与“万有引力”
2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。
二、合作交流,探索猜想
(一)故事激趣,初次猜想
1、朝三暮四
2、初步感知,大胆猜想
出示:3+4=4+3
师:仔细观察这两个加法算式,你发现了什么?
得出:两个加数交换位置,和不变。(适时板书)
(二)广泛举例,验证猜想。
师:这里是3和4的位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)
师:既然是猜想,想不想知道猜的对不对?
生:想。
师:我们还得举例验证。
1、举例要求:
(1)任意两个数,求出他们的和;
(2)交换两个加数的位置,再求出两个数的和:
(3)比较两次的结果,判断式子是否相等。
2、学生汇报,师板书。
3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)
4、揭题:大家发现的这个规律叫什么呢?
学生交流后,师板书。
(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。
(学生可能使用文字,图形,符号等方式)
(2)用字母表示加法交换律:a+b=b+a
6、追问:加法交换律中,什么变了,什么没有变?
7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)
(3)出示教材56页的例题情境图。
解决:跳绳的有多少人?
28+17=45(人)17+28=45(人)
(三)规律延伸,猜想拓展。
1、根据反思,拓展规律。
生可能会说出以下几个想法?
“猜想五:几个加数时,变换加数的位置和也不变?“
2、举例探究,验证猜想。
师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
3、汇报交流,验证猜想。
师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结
小结:a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:b、只要能举一个反倒,就能验证猜想肯定不成立。
(2)验证猜想三。
师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bxa。
(3)验证猜想四
师:哪些同掌选择了“猜想四”,又是怎样做的?
学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。
加法交换律和结合律教学后记篇三
教 者: 唐 荣
教学设计:
明确今天的教学内容 板书:运算律
简介运算律的含义:即运算过程中发现的规律.
一,教学加法交换律:
2,学生交流各自的解法,说说列式的理由
板书:28+17 男生跳绳人数+女生跳绳人数
17+28 女生跳绳人数+男生跳绳人数
3,比较两式结果,总结规律
4,由学生说出他们的发现:你还能举出这样的例子吗
二,数学加法结合律的条件(通过例题发现规律)
2,交流解题方法,明确算理
(28+17)+23 28+(17+23)
4,总结归纳这一规律,并学习用字母表示.
5,明确两规律的名称.
三,组织练习
2,做第2题,让学生先填一填,再说出各是怎么想的.
3,完成第4题,说出每组题中哪种方法简便,为什么
4,完成第5题.
四,全课总结
1,由学生说说本节课的收获.
2,教师总结及要求
教学反思:
通过学习这节课的教学,我有这样的想法:
加法交换律和结合律教学后记篇四
课堂上我从口算a、b两组竞赛题入手,让学生练习计算,比速度,让学生马上意识到算b组题的速度明显比a组题快,先声夺人,让孩子感受到简便算法的优越,接着教师引导:为什么b组题算得快,这其中蕴含哪些数学知识呢?这一问题马上激起了学生探究的欲望,学习问题的产生将学生自然带入到学习状态中来,激发了学生强烈的探究欲望。
教学新知前我让学生对课题“加法的运算定律”说说自己的理解,学生很自然地想到:我们今天要研究的是加法的一些运算规律,再由贴近学生的生活情境引入主题,让学生自由地提问,学生提出的问题多数是用加法解决的问题,不仅培养了学生发散性的思维,还能让学生提出的问题直奔主题,老师的引导做到了有放有收,从而提高了学习效率。
数学课标指出:在数学教学过程中,教师应注重发展学生模型思想。本节课我注重“授之鱼”,更注重“授之以渔”。先是和学生一起学习了加法的结合律,总结出了四步学习法:提出问题---解决问题---举出例子----总结归纳。建立这样的模型后让学生按照这样的方法展开自学活动。本节课的教学并不是仅仅让学生掌握加法的运算定律,更重要的是要掌握解决问题的方法,培养学生观察、分析、比较、概括的能力。整节课对学生有“扶”又“放”,在教会孩子知识的同时,也教会了孩子的学习方法。这四步学习法对后续一些运算定律的学习,一些规律的推理和验证都用重要的意义。
本节课的教学内容如果按教材的编排程序去学习是体现了知识的学习由浅入深,循序渐进。但我觉得学生自学加法结合律有一定的难度,需要教师的引导才能学懂、学透,而加法交换律学生很容易通过老师的“自学提示”展开学习,所以我大胆地对教材的内容进行了调整,先领学生学习加法结合律,而加法交换律我放手让学生根据“四步学习法导学单”进行自学,学生的学习效果非常好。课堂上做到了以学定教,立足于学生的学,立足于学生的终生学习和可持续性发展。
加法交换律和结合律教学后记篇五
上课伊始,我先说了个牛顿的故事:牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。目的是想告诉学生要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。然后说,随着气候渐渐转凉,学校将组织同学们进行冬季锻炼——跳绳和踢毽。请大家翻开课本,看看从图上可以获得哪些信息,根据这些信息可以提出什么问题。
反思:自我感觉这样的导入效果不错,吸引了大部分学生的注意力,培养了学生的问题意识。学生能马上提出一些问题。为后面的探究学习做好了铺垫。
在初步认识了28+17=17+28这样的等式以后,我问:这样的等式你还能举些例子吗?(学生争先恐后地回答)。我追问,如果一直这样说下去,能说的完吗?(学生马上回答我:不能。)我启发道:这样的等式无穷无尽,在这里肯定有着某种规律,大家想知道吗?(想)好,大家以4人小组为单位,研究这些等式里蕴藏的规律,可以用你们喜欢的方式来表示,但要说明表示的理由。经过一番合作,学生的探究结果也出来了,主要有这样几种:甲数+乙数=乙数+甲数;△+○=○+△;逗号+句号=句号+逗号;a+b=b+a,这时我又让他们用文字叙述这一规律。然后我小结:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。
然后指着板书指出:我们刚才研究的就是加法交换律。接着,让学生用同样的方法探究加法结合律。
反思:教师是教学的组织者和引导者,这样的设计,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用多种方法表示,让学生有一种成就感。然后引导学生运用前面的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。这节课我强调学生的发言要大声的说:我们小组的发现是……充分调动他们的自信心和自豪感。
总的来说,这堂课取得了较好的效果,呵呵,自我感觉良好,不过,也发现了一些问题,这些问题有些是客观的,有些是由于本人的教学机智和教学设计还不够。
1、在学生得出了加法交换律时,没有让学生总结一下研究问题的.方法,而是直接让他们去研究加法结合律。
2、对“关注每一位学生”这个问题,没有做到。
加法交换律和结合律教学后记篇六
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交 换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。
课程资源的开发与利用:多媒体课件
教学过程:
一、 创设情境,初步感知
1、课前谈话(讲“朝三暮四”的故事)
听了这个故事,你想说些什么呢?(交换、不变)
2、情境引入
(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)
(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)
(3)师:你能提出用加法计算的问题吗?
①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人
④参加活动的一共有多少人?
(2)我们先来解决第一个问题:参加跳绳的一共有多少人?
你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)
观察比较这两个不同算式的计算结果。提问:你们发现了什么?
引导学生说出:28+17和17+28的结果都是45。
教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+1717+28)
(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。
2、在列举中验证规律
象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。
谁愿意来交流。
提问:你写了几个?说说看 。
根据学生回答,教师相机板书算式,
有没有比她多的 。
提问:指着板书,你们写的时候有没有什么规律?
学生能说到加数不变,交换位置,结果是一样的就行。
按照这样的规律,如果老师给你时间你还能写吗?
能写几个?无数个,写不完,用省略号表示(板书……)
3、在反思中概括规律
需要合作的同学,可以四人小组合作。教师巡视搜集信息。
估计情况: 甲数+乙数=乙数+甲数,……
请同学起来交流:
如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。
小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。
指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。
5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)
三、学习加法结合律。
1.在情境中感受规律
你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。
交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)
有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)
如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。
观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)
提问:它符合加法交换律吗?(不符合,加数的位置没变)
提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)
引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。
2、在计算中验证规律。
再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。
(45+25)+13ο45+(25+13)
(36+18)+22ο36+(18+22)
如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
你还能写出类似的等式吗?汇报前置性作业第五题。
指名几个学生回答,追问:你是怎么想的?
回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。
有这样规律的算式多吗?板书……
3、揭示加法结合律
小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)
板书:(a+b)+c=a+(b+c)
跟老师一起读一遍。
9+7想:
=9+(1+6)
=(9+1)+6
=10+6
=16
三:巩固内化,拓展应用。
1、课件出示想想做做第1题。
师:下面的加法等式各应用了什么运算律?先说给同桌听听。
2、课件出示想想做做第2题:
3、课件出示想想做做第4题。
师:对于这样的比赛结果,你有什么话想说?
比较每组中的两道题有什么联系?哪道题计算更简便些?
4、完成想想做做第5题
师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。
师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)
5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)
6、你想和班级中哪几号同学交朋友?
四、课堂总结
师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。
板书设计:
加法的运算定律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
17+23=23+17 =68(人) =68(人)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)

一键复制