总结可以帮助我们回顾一段时间内的成长和进步。通过总结,我们可以将学习或工作中的经验和成果分享给他人,促进互相学习和进步。以下是一些优秀总结范文的分享,供大家参考和借鉴。
初中数学知识点归纳图篇一
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
初中数学知识点归纳图篇二
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性。
圆是以圆心为对称中心的中心对称图形。
(2)基本函数的概念及性质。
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3.
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
(3)一元二次方程常见考法。
3、列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式。
(4)数据的平均数中位数与众数。
1、数据13,10,12,8,7的平均数是10.
2、数据3,4,2,4,4的众数是4.
3、数据1,2,3,4,5的中位数是3.
(5)特殊三角函数值。
30°=根号3/2。
260°+cos260°=1.
3.2sin30°+tan45°=2.
45°=1.
60°+sin30°=1.
初中数学知识点归纳图篇三
全面复习基础知识,加强基本技能训练的第一阶段的复习工作我们已经结束了,在第二阶段的复习中,反思和总结上一轮复习中的遗漏和缺憾,会发现有些知识还没掌握好,解题时还没有思路,因此要做到边复习边将知识进一步归类,加深记忆;还要进一步理解概念的内涵和外延,牢固掌握法则、公式、定理的推导或证明,进一步加强解题的思路和方法;同时还要查找一些类似的题型进行强化训练,要及时有目的有针对性的补缺补漏,直到自己真正理解会做为止,决不要轻易地放弃。
这个阶段尤其要以课本为主进行复习,因为课本的例题和习题是教材的重要组成部分,是数学知识的主要载体。吃透课本上的例题、习题,才能有利于全面、系统地掌握数学基础知识,熟练数学基本方法,以不变应万变。所以在复习时,我们要学会多方位、多角度审视这些例题习题,从中进一步清晰地掌握基础知识,重温思维过程,巩固各类解法,感悟数学思想方法。复习形式是多样的,尤其要提高复习效率。
另外,现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造了的题,有的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是课本中题目的引申、变形或组合,课本中的例题、练习和作业题不仅要理解,而且一定还要会做。同时,对课本上的《阅读材料》《课题研究》《做一做》《想一想》等内容,我们也一定要引起重视。
注重课堂学习。
在任课老师的指导下,通过课堂教学,要求同学们掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,通过对基础知识的系统归纳,解题方法的归类,在形成知识结构的基础上加深记忆,至少应达到使自己准确掌握每个概念的含义,把平时学习中的模糊概念搞清楚,使知识掌握的更扎实的目的,要达到使自己明确每一个知识点在整个初中数学中的地位、联系和应用的目的。上课要会听课,会记录,必须要把握每一节课所讲的知识重点,抓住关键,解决疑难,提高学习效率,根据个人的具体情况,课堂上及时查漏补缺。
夯实基础知识。
在历年的数学中考试题中,基础分值占的最多,再加上部分中档题及较难题中的基础分值,因此所占分值的比例就更大。我们必须扎扎实实地夯实基础,通过系统的复习,我们对初中数学知识达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
有的考题会对需要考查的知识和方法创设一个新的问题情境,特别是一些需要有较高区分度的试题更是如此;每个中档以上难度的数学试题通常要涉及多个知识点、多种数学思想方法,或者在知识交汇点上巧妙设计试题。因此,我们每一个同学要学会思考,老师上课教给我们的是思考问题的角度、方法和策略,我们要用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。
注意知识的迁移。
课本中的某些例题、习题,并不是孤立的,而是前后联系、密切相关的,其他学科的知识也和数学有着千丝万缕的联系,我们要学会从思维发展的最近点出发,去发现、研究和展示这些知识的内在联系,这样做不仅有助于自己深刻理解课本知识,有利于强化知识重点,更重要的是能有效地促进自己数学知识网络和方法体系的构建,使知识和能力产生良性迁移,达到触类旁通的效果,通过探究课本典型例题、习题的内在联系,让我们在深刻理解课本知识的同时,更有效地形成知识网络与方法体系。例如一元二次方程的根的判别式,不但可以解决根的判定和已知根的情况求字母系数,还可以解决二次三项式的因式分解、方程组的根的判定及二次函数图象与横轴的交点坐标。
初中数学知识点归纳图篇四
1.直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2.特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;。
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3.淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8.综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9.演绎法:由一般到特殊的推理方法。
10.归纳法:由一般到特殊的推理方法。
初中数学知识点归纳图篇五
在平日的学习中,大家都没少背知识点吧?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。你知道哪些知识点是真正对我们有帮助的吗?下面是小编精心整理的初中数学《整式》知识点归纳总结,欢迎大家借鉴与参考,希望对大家有所帮助!
1、单项式:
1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的.指数的和叫做这个单项式的次数。
2、多项式:
1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3、多项式的排列:
1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
初中数学知识点归纳图篇六
很多同学习惯从前至后复习,这样复习数学又一个好处,就是能一环扣一环复习起来更加有条理;也有的同学从自己的薄弱环节入手,逐渐减少疑问和错误,这样复习更有针对性,所以,复习阶段理清复习顺序很关键,找准复习目标很重要。复习最忌讳的就是杂乱无章、“眉毛胡子一把抓”,这样不仅没有效果,反而容易产生厌学情绪。
2、重视基础,切不可眼高手低。
很多同学在进行数学学习的过程中,往往会出现“简单的不想做,难的不会做”。出现这种现象的原因在于,我们在学习过程中其实对基础知识掌握的不牢固。每个定理的适用条件大家要多加注意,尤其是在划分数学定义域的时候,很多时候它就已经给你画出了你可用定理的范围。再根据其他条件挑出最适合的那一款就是你要用的定理了。所以在复习过程中,大家要加强自己对基础知识以及基础定理的掌握。再难的题目也不过就是几种简单方法的叠加而已。所以一定要记得打好基础!不要觉得一看我就会而不去动手做,总要做做你才知道哪个题目你真的掌握了。
3、归纳出解题方法及技巧。
4、做题之前摒弃答案。
在做题之前,不要潜意识的就告诉自己不会,从而直接开始看答案,看了一遍答案之后说,嗯,我会了,这不挺简单的吗?其实你还是不会!所以不要先看答案再做题,用自己所学的知识尽力去解决你看到的问题,就算解决不了你也算仔细研读了题目内容,这样就算你看答案也不至于是被动接受。所以一定要试试自己会不会做再开始做题,在最后不会看懂了再自己放过答案重新做一次,这样才能真正掌握这种题。
初中数学知识点归纳图篇七
匀速直线运动物体沿直线运动时,如果在相等时间内通过的路程都相等,这种运动叫匀速直线运动,做匀速直线运动的物体在任意相同时间内通过的路程都相等,即路程与时间成正比;速度大小不随路程和时间变化。
(一)路程:运动物体通过的路径的长度称为路程。在国际单位中,路程的.单位是米(m)。
(二)比较物体运动快慢的两种方法。
1.比较物体通过相等路程所用的时间的长短,所用时间短的运动得快。
2.比较物体在相等时间内通过路程的长短,通过路程较长的运动得快。
(三)物体通过的路程和时间都不相等时,比较路程与时间的比值(单位时间内通过的路程),比值大的运动得快。
(四)速度的物理意义、定义及公式。
1.物理意义:速度是表示物体运动快慢的物理量。
2.定义:做匀速直线运动的物体,单位时间内通过的路程称为该物体运动的速度。
3.计算公式:v=s/t。
4.国际单位:米/秒(m/s);常用单位:千米/时(km/h);1米/秒=3.6千米/时。
初中物理所学过的匀速直线运动,其实就是最简单的机械运动,知识要领很好理解。
初中数学知识点归纳图篇八
在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数。
单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式。
几个单项式的和叫多项式。
4、多项式的项数与次数。
多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)和是常见的两个二次三项式。
5、整式。
凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
6、同类项。
所含字母相同,并且相同字母的指数也相同的'单项式是同类项。
7、合并同类项法则。
系数相加,字母与字母的指数不变。
8、去(添)括号法则。
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
9、整式的加减。
整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
10、多项式的升幂和降幂排列。
把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
初中数学知识点归纳图篇九
数学是我们的一个主要学科,初中数学的知识点有很多,学生们一定要掌握扎实,以下是小编整理的一些初中数学重要知识点总结归纳,欢迎阅读参考。
1有理数加法法则。
1、同号两数相加,取相同的符号,并把绝对值相加;。
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;。
3、一个数与0相加,仍得这个数。
2有理数加法的运算律。
1、加法的交换律:a+b=b+a;。
2、加法的结合律:(a+b)+c=a+(b+c)。
3有理数减法法则。
减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
4有理数乘法法则。
1、两数相乘,同号为正,异号为负,并把绝对值相乘;。
2、任何数同零相乘都得零;。
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
5有理数乘法的运算律。
1、乘法的交换律:ab=ba;。
2、乘法的结合律:(ab)c=a(bc);。
3、乘法的分配律:a(b+c)=ab+ac。
6单项式。
只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的。
7多项式。
1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
8中心对称。
1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点。
2、心对称的两条基本性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
3、中心对称图形。
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
重视每一节课。
初中数学是一个关键时期,初中数学是与小学数学完全不同的,初中数学开始进入了一个高难度的层次,想要学好数学必须要重视每一节课,曾经有一个笑话说:“那年我低头捡了一支笔,从此之后再也没有学会过数学”,当然了这样说是全完在开玩笑的,但是数学每一节课也是非常的重要的,如果一节课没有跟上学习,就可能会被落下很多。
同时,要想上好每一节课,必须做到课前先预习。让自己在学习的过程中能够轻松一点。
想要学好数学知识点是不可以缺少的,学好数学的第一步就是能够掌握基本的知识点,知识点是学习数学的一个入门必备的。无论是数学知识点和概念都是同样的重要的。掌握了数学的知识点之后就要学会利用知识点去做题了,光是记住了知识点是没有用的,一定要勤加练习,先从基础题型开始,再从难度一点点上升的题型开始练习,让数学课学与练相结合。,一般做好与知识点有关的两道练习题即可,如果遇到不懂的难题,一定要提出来,及时的问老师或者问同学进行解答。
独立的完成作业和习题。
学数学最忌讳的就是依赖,依赖课本、依赖参考答案、依赖教科书。这样做的题是完全不是自己的,想要学好数学首先应该让自己的有能够独立完成作业和习题的能力,不依赖于课本的知识点和概念,这就回归到第一点了,就是数学的基础知识是一定要掌握好的,能够在将来做题中独立思考,完成作业和习题才能提高数学成绩。
一、从变更了命题的表达形式上,培养自己思维的深刻性。加强了这方面的训练,可以使我们养成深刻理解知识的本质,从而达到培养自己的审题能力。
二、从寻求不同的解题途径与思维方式上,培养自己思维的广阔性。对问题解答的思维方式不同,产生的解题方法各异,这样的训练有益于打破形成的思维定势,开拓我们的思路,优化解题方法,从而培养唯美的发散思维能力。
三、从变换几何图形的位置、形状和大小上,培养唯美思维的灵活性、敏捷性。逐步学会把课本中的例题和习题多层次变换,既加强了知识之间的联系,又激发了自己的学习兴趣,达到既巩固知识又培养能力的目的。
四、从改变题目的条件和结论上,培养我们思维的批判性。这样的训练可以克服自己静止、孤立地看问题的习惯,促进自己对数学思想方法的再认识,培养我们研究和探索问题的能力。
初中数学知识点归纳图篇十
1、上课前要调整好心态,一定不能想,哎,又是数学课,上课时听讲心情就很不好,这样当然学不好!
2、上课时一定要认真听讲,作到耳到、眼到、手到!这个很重要,一定要学会做笔记,上课时如果老师讲的快,一定静下心来听,不要记,下课时再整理到笔记本上!保持高效率!
3、俗话说兴趣是最好的老师,当别人谈论最讨厌的课时,你要告诉自己,我喜欢数学!
4、保证遇到的每一题都要弄会,弄懂,这个很重要!不会就问,不要不好意思,要学会举一反三!也就是要灵活运用!作的题不要求多,但要精!
5、要有错题集,把平时遇到的好题记下来,错题记下来,并要多看,多思考,不能在同一个地方绊倒!
总之,学习数学,不要怕难,不要怕累,不要怕问!

一键复制