总结是对自己工作和学习的一种自我评价,也是对他人观察和认同的证明。写作时,我们应该注重语言表达的准确性和文采的优美。阅读是拓宽视野和扩展知识的有效途径。
高考理科数学试题篇一
2018年全国i卷理科数学试题,注重考试内容的基础性、全面性、综合性、应用性,坚持能力立意的原则,重点考查考生的逻辑思维能力、运算求解能力以及综合运用数学知识解决问题的能力,考查考生的数学素养和探究意识。
具体来说,今年全国i卷理科试题有如下几个特点:
一是保持稳定,主要体现在全面考查基础,突出考查主干,如多数试题都是以学生最熟悉的知识和问题呈现,只要对所涉及的知识和方法有基本的认知就可正确作答,这类试题有利于稳定考生的心态,有利于考生正常发挥。此外,试题注重对高中所学内容的全面考查,如集合、复数、函数、数列、线性规划、平面向量、计数原理、极坐标与参数方程、不等式等内容都得到了有效的考查。在此基础上,试卷还强调对主干内容的重点考查,如在解答题中考查了函数与导数、解三角形、概率统计、立体几何、圆锥曲线等主干内容,这体现了试卷对数学知识考查的基础性、全面性和综合性。
试卷在强调通性通法的同时,还坚持能力立意,试卷往往以一道题为载体,呈现给考生的是解决一类问题的通用方法。如第18题考查了证明面面垂直和求线面角的一般方法,重点考查考生的逻辑推理和空间想象能力;第19题考查了解决圆锥曲线定值问题的一般方法,重点考查考生的运算求解能力;特别是第21题考查了化归与转化的思想方法,揭示了如何构造辅助函数证明不等式的方法,重点考查考生分析问题和解决问题的能力。
二是坚持创新,主要体现在注重题型设计创新,综合考查数学素养,试题设问新颖。如第10题以古希腊数学家研究的几何图形为情境,设计了一个几何概型及几何概率计算的问题;第16题关于三角函数的最值问题,体现导数工具在研究函数最值问题中的一般性应用;第20题将函数与概率综合,设问新颖,体现了考生运用数学知识解决数学问题的能力和素养。
三是注重应用,试题贴近生产生活实际,体现数学应用价值。如第3题以新农村建设为背景,试题情境丰富,贴近生活,具有浓厚的时代气息,设计的问题自然却不乏新颖;再如第20题以产品质量检查为背景,设计的问题有很强的现实意义,如何根据期望进行科学合理决策,不仅考查考生对概率统计知识的理解,更是考查概率统计知识在数学和生活中的应用,使考生体会到数学知识与现实生活息息相关。
总的来说,今年全国i卷理科数学试题全面覆盖中学数学的主干内容,坚持平凡问题考查真功夫,没有偏题怪题,非常有利于高校科学选拔,也对高中教学有很好的导向作用。
高考理科数学试题篇二
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
高考理科数学试题篇三
一、三角函数或数列。
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何。
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
统计与概率。
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)。
高考解析几何剖析:
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数。
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等方法精确细微);。
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);。
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
1、审题要慢,答题要快。
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大。
高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
3、先易后难,敢于放弃。
能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
4、先熟后生,合理用时。
面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。
高考理科数学试题篇四
(2)从具体出发,选取适当的分类标准。
(3)划分只是手段,分类研究才是目的。
(4)有分有合,先分后合,是分类整合思想的本质属性。
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。
二:高中数学答题方法化归与转化思想。
三:高中数学答题方法特殊与一般思想。
(1)通过对个例认识与研究,形成对事物的认识。
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论。
(3)由特殊到一般,再由一般到特殊的反复认识过程。
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。
高考理科数学试题篇五
高中数学答题方法有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。
高中数学答题方法或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性。
(2)偶然中找必然,再用必然规律解决偶然。
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
高考理科数学试题篇六
一、高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。
二、在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。单看选项,一般bd稍多,a较少。还有一点,选了之后就不要改了,除非你有90以上的把握。这个经验堪称是史上最牛的高考数学蒙题技巧。
三、经过历年高考经验总结,高考数学第一题和最后一题一般不会是a!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正x,一个是负x的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选b!
四、数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。
五、超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。
高考理科数学试题篇七
为了准确,考生可以估3次分:第一次:估计最少能得的分数,假设遇到最苛刻的阅卷老师,模棱两可的题他全不给你分,要点没答全也不给你分,要估算这种情况下可能得的分数,这是最低不能少于的分;第二次:乐观的估计,与第一次相反,估出能得的分数;第三次:均衡考虑,不仅要自己估分,还要听取老师的意见,按照学校统一的标准估分,这样就可以避免自我认知跑偏。最后,可以计算这3次估分的平均分,作为考试成绩出来之前,了解专业和院校、准备填报志愿的一个依据。
2022高考解答题评分标准。
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;。
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;。
3.思维不严谨,不要忽视易错点;。
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
高考填报志愿的技巧。
志愿填报首选城市,不是学校、更不是专业:为了四年甚至更久的生活,为了谋得更好的发展空间,请记住,志愿要一定首选城市。城市的选择必须和家庭情况相互配合,考生应接纳但不盲从家长建议。海阔凭鱼跃,天高任鸟飞,高分者城市选择中必选“北上广深”,低分者则应当选择省内经济发达的城市,再次是临近省份经济发达城市。
高考理科数学试题篇八
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(4)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
高考理科数学试题篇九
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;。
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;。
3.思维不严谨,不要忽视易错点;。
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;。
4、选择与填空中出现不等式的题目,优选特殊值法;。
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;。
高考理科数学试题篇十
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
2、数列题。
3)证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
3、立体几何题。
1)证明线面位置关系,一般不需要去建系,更简单;
3)注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
4、概率问题。
1)搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2)搞清是什么概率模型,套用哪个公式;
3)记准均值、方差、标准差公式;
4)求概率时,正难则反(根据p1+p2+。.。+pn=1);
5)注意计数时利用列举、树图等基本方法;
6)注意放回抽样,不放回抽样;
7)注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8)注意条件概率公式;
9)注意平均分组、不完全平均分组问题。
5、圆锥曲线问题。
3)战术上整体思路要保7分,争9分,想12分。
6、导数、极值、最值、不等式恒成立(或逆用求参)问题。
2)注意最后一问有应用前面结论的意识;
3)注意分论讨论的思想;
4)不等式问题有构造函数的意识;
5)恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6)整体思路上保6分,争10分,想14分。

一键复制