在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
数学必修一的知识框架篇一
1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,
3、a—边长,s=6a2,v=a3
4、长方体a—长,b—宽,c—高s=2(ab+ac+bc)v=abc
5、棱柱s—h—高v=sh
6、棱锥s—h—高v=sh/3
7、s1和s2—上、下h—高v=h[s1+s2+(s1s2)^1/2]/3
8、s1—上底面积,s2—下底面积,s0—中h—高,v=h(s1+s2+4s0)/6
9、圆柱r—底半径,h—高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h
10、空心圆柱r—外圆半径,r—内圆半径h—高v=πh(r^2—r^2)
11、r—底半径h—高v=πr^2h/3
12、r—上底半径,r—下底半径,h—高v=πh(r2+rr+r2)/313、球r—半径d—直径v=4/3πr^3=πd^3/6
14、球缺h—球缺高,r—球半径,a—球缺底半径v=πh(3a2+h2)/6=πh2(3r—h)/3
15、球台r1和r2—球台上、下底半径h—高v=πh[3(r12+r22)+h2]/6
16、圆环体r—环体半径d—环体直径r—环体截面半径d—环体截面直径v=2π2rr2=π2dd2/4
17、桶状体d—桶腹直径d—桶底直径h—桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)
数学必修一的知识框架篇二
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1)元素的确定性;
2)元素的互异性;
3)元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:a={我校的篮球队员}b={12345}
2)集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集n或n+整数集z有理数集q实数集r
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a:a
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x—3>2的解集是{x?r|x—3>2}或{x|x—3>2}
4、集合的分类:
1)有限集含有有限个元素的集合
2)无限集含有无限个元素的集合
3)空集不含任何元素的集合例:{x|x2=—5}
1、“包含”关系子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b或集合b不包含集合a记作ab或ba
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设a={x|x2—1=0}b={—11}“元素相同”
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b
①任何一个集合是它本身的子集。a?a
②真子集:如果a?b且a?b那就说集合a是集合b的真子集,记作ab(或ba)
③如果a?bb?c那么a?c
④如果a?b同时b?a那么a=b
3、不含任何元素的集合叫做空集,记为φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1。交集的定义:一般地,由所有属于a且属于b的元素所组成的集合叫做ab的交集。
记作a∩b(读作”a交b”),即a∩b={x|x∈a,且x∈b}。
2、并集的.定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做ab的并集。记作:a∪b(读作”a并b”),即a∪b={x|x∈a,或x∈b}。
3、交集与并集的性质:a∩a=aa∩φ=φa∩b=b∩a,a∪a=aa∪φ=aa∪b=b∪a。
4、全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作:csa即csa={x?x?s且x?a}
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用u来表示。
(3)性质:⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u

一键复制