在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
数学公开课教学设计案例数学公开课教学设计及改进篇一
1、使学生认识圆,知道圆各部分的名称。
2、掌握圆的特征及同一圆内半径与直径的关系。
3、会用圆规按指定的要求画圆。
4、通过观察、操作、讨论,培养学生的探索能力。
教学重点:圆的特征及半径与直径和关系。
教学难点:圆的特征。
教学具准备:
学具:大小不同的圆片各2个,直尺、圆规。
教具:圆形纸片,圆规,实物投影仪,自制多媒体课件。
教学过程:
一、课堂启发,自选学标(感动是学习的动力)。
利用多媒体展现各种不同形状的平面图形并提问:
1、找出你认为最与众不同的图形,为什么?你最想学哪种图形?
2、板书课题:圆的认识
3、揭示学标:你最想学习圆的什么知识?(认识圆、掌握圆的特征、会画圆)
二、预习思考,实践操作(感觉是学习的入门,知识来源于生活)。
对比思考:我们以前学习的长方形、正方形、三角形、梯形等都是平面图形。这节课我们要学习的圆也是一种平面图形,它和我们以前学的平面图形有不同之处,你们发现了吗?(长方形、正方形、三角形、梯形等都是由线段围成,而圆是由曲线围成的平面图形)
体验圆的形成:你认为用什么方法可以得到一个圆?你认为哪种方法好?你会画圆吗?用你最喜欢的方法画出来吧!
1、学生操作:用自己喜欢的方法画任意一个圆(不限定用圆规)。
(学生画出的可能有些不是圆)
2、圆规画圆。
教师:请大家拿出手中的圆规,认真观察一下圆规的样子,并用它尝试画一个标准的圆。(学生初次画圆)
教师:请你介绍一下你用的是什么工具,是怎么画圆的?
3、讨论:画圆的步骤是分哪几步?
教师在黑板是演示怎用圆规正确地画一个圆,作教学使用。
4、小结:(1)画圆的步骤是:一是定好两脚的距离;二是固定一点;三是旋转一周。
设悬:学会了画圆,你想不想进一步了解圆?圆的大小跟什么有关,圆的位置跟什么有关?(为下面学习圆的特征做铺垫。)
三、问题讨论,认识圆心(感知是学习的基础)。
1、举例说说日常生活中哪些物体的形状是圆形的?
2、动手操作:(1)你手中的圆片是怎样得来的?
(2)对折打开,连续3次。还可以折下去吗?
3、观察讨论:折过若干次后你发现了什么?
4、归纳小结:这些折痕都相交于一点,正好在圆的正中心,我们把圆中心的一点叫作圆心,用字母“o”来表示。画圆时,圆心在哪里,圆就画在哪里,所以圆心决定圆的位置。
5、验证内化:在你手中的圆片上标出圆心,并用字母表示。
四、教材分析、探索特征(感悟是学习的升华)。
过渡导入:学习了圆心,那么同学们能不能自学其它有关圆的(知识?(小组合作自学)
1、认识圆的半径。
教师:刚才同学们画的圆都比较好,现在大家拿出直尺画出从圆心到圆上的任意一点的线段并量一下它们的距离看看你们发现了什么?这样的线段你能画多少条出来?(这些线段的长度都相等;画不完,这样的线段有无数条。)
提问:你是怎样观察得出在一个圆内这样的线段有无数条的?(因为围成圆的曲线是由无数个点组成的连接圆心到圆上任意一点的线段有无数条)
教师:连接圆心到圆上任意一点的线段有无数条,这样的线段我们把它叫做半径(齐读:连接圆心和圆上任意一点的线段叫做圆的半径。)半径一般用字母r表示。
由于圆周上有无数个点,所以半径就有无数条。
说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。
2、认识圆的直径。
(1)除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大校学生讨论后回答(直径)
教师:请学生同学们动手画一画直径。画得越多越好。画时要注意什么? (过圆心,两端在圆上) 齐读:通过圆心且两端都在圆上的线段叫圆的直径。直径一般用字母d表示。
(2)让学生观察自己画的直径,找出直径的特征。
(3)直径的特征。学生动手操作量一量数一数在同一圆内,直径的长度有什么特点,直径能不能画完?为什么?说明理由。(引出半径和直径的关系,动手验证。或直尺量,或用圆纸片对折)
3、半径和直径的关系。
师生讨论:
(1)把你学到的知识告诉老师与同学们?
(3)学习了这些特征,你知道圆的大小由什么决定了吗?(前后呼应)
小结:在同圆或等圆里,[半径有无数条,直径也有无数条,所有的半径都相等,所有的直径也都相等;直径是半径的2倍,半径是直径的一半]。
4、操作内化:把刚才学到的知识在圆片上表示出来。
五、课堂练习,学以致用(感恩是学习的境界,知识又服务于生活)
多媒体展示:
1、判断:
(1)两端都在圆上的线段叫作直径。--( )
(2)直径是半径的2倍,半径是直径的一半。---( )
(3)直径和半径都是直线。 ( )
(4)用两脚之间的距离是2厘米的圆规画出的圆,它半径是2厘米。( )
2、选择正确的半径、直径: b ad
3、讨论操作: c e
(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。
数学公开课教学设计案例数学公开课教学设计及改进篇二
两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。
1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。
2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。
3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。
[教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。
[教学难点]:掌握用线段图解决生活中的数学问题的方法。
一、创设情境
1、听唱歌曲《春天在哪里》,让学生感受春天的美好。
2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。
二、探究新知
(展示题目)
1、学生画线段图表示,教师巡视指导。
2、指名回答。
3、教师把学生的想法用表格出示如下:
4、引导总结:
5、生:手指线段图
师:在线段图上,点数和间隔数又有怎样的关系呢?
生:点数=间隔数+1
6、师:总长与间距和间隔数又有怎样的等量关系呢?
生:总长=间距×间隔数
7、尝试应用:
三、巩固新知
四、小结本节内容
五、教学作业
数学公开课教学设计案例数学公开课教学设计及改进篇三
1、会用待定系数法求反比例函数的解析式。
2、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。
3、会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。
重点:用待定系数法求反比例函数的解析式。
难点:例3要用科学知识,又要用不等式的知识,学生不易理解。
1、反比例函数的定义:
判断下列说法是否正确(对‖√‖,错‖3‖)
定时,商和除数成反比例。(5)当被除数(不为零)一
(6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。
2、思考:如何确定反比例函数的解析式?
3、说一说它们的求法:
(1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
(2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。
4、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为r(ω),通过电流的强度为i(a)。
(1)已知一个汽车前灯的电阻为30ω,通过的电流为0.40a,求i关于r的函数解析式,并说明比例系数的实际意义。
在例3的教学中可作如下启发:
(1)电流、电阻、电压之间有何关系?
(2)在电压u保持不变的前提下,电流强度i与电阻r成哪种函数关系?
(3)前灯的亮度取决于哪个变量的大小?如何决定?
先让学生尝试练习,后师生一起点评。
(1)求p与v的函数关系式,并指出自变量的取值范围。
(2)求v=9m3时,二氧化碳的密度。
(1)y关于x的函数解析式;
(2)当z=-1时,x,y的值。
值都等于10,求y与x之间的函数关系。
数学公开课教学设计案例数学公开课教学设计及改进篇四
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
引导发现法、讨论法
教具:多媒体课件
学具:三角板、量角器
大屏幕、实物投影
(一)创设情境,设疑激思
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
数学公开课教学设计案例数学公开课教学设计及改进篇五
《二元一次方程》是九年义务教育人教版教材七年级下册第四章《二元一次方程组》的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。
(一)知识与技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。
(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得求二元一次方程解的思路方法。
(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。
教学重点:二元一次方程及其解的概念。
教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
教法:情境教学法、比较教学法、阅读教学法。
学法:阅读、比较、探究的学习方式。
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
设姚明投进了x个两分球,罚进了y个球,可列出方程。
设易建联投进了x个两分球,y个三分球,可列出方程。
从而揭示课题。
(设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
师:那到底什么叫二元一次方程?(学生思考后回答)
师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答)
师:根据概念,你觉得二元一次方程应具备哪几个特征?
活动:你自己构造一个二元一次方程。
快速判断:下列式子中哪些是二元一次方程?
①x2+y=0
②y=2x+
4③2x+1=2x
④ab+b=4
(设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。)
师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。(设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。)
例:已知方程3x+2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=负2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。)
本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。在二元一次方程的解的教学过程中,采用的是让学生体会“一个解、不止一个解、无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊、一般、特殊”的教学流程,以期突破难点。首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。
数学公开课教学设计案例数学公开课教学设计及改进篇六
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认
识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2= ,x1x2= 。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?
①二次项系数a是否为零,决定着方程是否为二次方程;
②当a≠0时,b=0,a、c异号,方程两根互为相反数;
③当a≠0时,△=b-4ac可判定根的情况;
④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。
⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
数学公开课教学设计案例数学公开课教学设计及改进篇七
1.通过案例理解正比例函数,能列出正比例函数关系式
2.教会学生应用正比例函数解决生活实际问题的能力
理解正比例函数的概念
利用正比例函数解决生活实际问题
【提出问题】
《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。
(1) 阿甘大约平均每天跑步多少千米?
(2) 阿甘的行程y(km)与时间x(天)之间有什么关系?
(3) 阿甘一个月(30天)的行程是多少千米?
【生】 列算式回答 【师】 点评总结
2.写出下列变量间的函数表达式
(1) 正方形的周长l和半径r之间的关系
【进一步抽象问题让学生思考】
(3) 下列函数关系式有什么共同点?(小组合作)
【分析共同点和不同点,找出规律】 (1) y=200x
1.正比例函数的概念:
2 【例题讲解】
【掌握函数图像的画法:列表,描点,连线】 3.练习
(1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值
四 小结。
五 课外作业。
由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。
数学公开课教学设计案例数学公开课教学设计及改进篇八
苏教版小学二年级数学第三册教材第102页的内容。
1、经历从复杂的现实情境中收集信息,提出数学问题、解决数学问题的过程,培养综合应用所学知识解决实际问题的能力。
2、积累数学活动的经验,培养学习数学的兴趣,形成良好的合作学习的态度,并在合作与交流的.过程中,获得良好的情感体验。
3、让学生感受数学在日常生活中的作用。
1、整体感知画面。
出示田园风光图。
学生小组内讨论交流。小组代表汇报:有苹果园、养蜂场、养兔场、养猪场、耕地和学生过河6个场景。
提问:你看到图中的方向标了吗?根据方向标你能说出6个场景的位置关系吗?学生先在小组内交流,再在班内汇报。
指名回答。
2、分块解决问题。
(1)苹果园。
提问:观察苹果园的画面和文字,说一说你了解到了什么信息。
你能解答小番茄提出的问题吗?
各自列式解答,指名说说解题的方法。
提问:根据苹果园每行有8棵苹果树这一事实,你还能提出什么问题?
一人提问题,全班学生解答。
(2)养蜂场
人人在小组内发表自己的看法。
谈话:根据从图上看到的蜂箱,你还能提出什么问题?学生提出问题后,让同组的学生列式解答。
(3)养兔场
谈话:美丽的田园里生活着很多可爱的兔子,你从图上看到养了哪些兔子?
小组内合作交流,提出并解决问题,看哪一组提出并解决的问题多。
小组代表在班内汇报提出的问题,其他组的学生回答如何解决。
(4)养猪场
一人提问题,本组内其他学生回答。
小组代表说出本组计算的结果,指定其他组的学生说说是怎样计算的。
(5)耕地
提问:观察耕地图,说说小蘑菇提出了什么问题。
在小组内讨论这个问题如何解答。例如,学生可以这样想:耕一块地用了8分钟,耕7块地用了56分钟,56分钟不满一小时,所以1小时能把7块地耕完。
向本班汇报本组的解决方法。
(6)学生过河
谈话:观察图画,你从图上看到了什么?在小组内交流。
猜一猜:他们会遇到什么问题?
在小组内说一说要几次才能全部过河,要说出是怎样想的。
你能说一说怎样乘坐最合适吗?让学生各抒己见,也可用图表示。
3、总结。
(1)提问:你还能提出其他的数学问题吗?让学生联系学过的知识思考。
(2)讲述:同学们在游览田园风光中,解决了很多的实际问题,以后只要留心观察,你会发现生活中处处有数学。
这节课中,学生通过自主探索,合作交流的方式,综合运用了多方面的知识,培养了学生的认知能力,为今后能解决实际问题奠定了良好的基础。

一键复制