作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是小编带来的优秀教案范文,希望大家能够喜欢!
认识负数的教案设计意图篇一
课的到入环节,以学生喜爱的游戏方式,说反义词感受生活中的相反现象。如:①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层);在银行存入了500元(取出了500元)。知识竞赛中,五(1)班得了20分(扣了20分),等等。这些相反意义现象学生在生活中比较常见为学生认识负数构建了平台。。接着采用学生几乎每天都能接触到有关气温方面的信息,在天气预报中也经常看到负数,他们已经直观地感受到这些数是用来表示零下温度的。这一生活经验,六年级的学生已相当熟悉,以这些生活经验为学习切入点,展开负数的教学,此“时”此“境”引入负数,更有助于理解生活中负数的具体含义,降低了学生的学习难度。
以前的数学教材中,“数与代数”领域已有较多内容,学生已能熟练地利用正数来表达、交流生活中遇到的实际问题。也由于当前大量媒体的介入,在生活中,对与负数学生也偶尔接触过,并几乎每天都接触到有关气温方面的信息,在天气预报中也经常看到负数,其实他们已经直观地感受到这些数是用来表示零下温度的。对于这些本人预设教案时有所考虑,但课堂上学生反馈的情况来看,学生比想象的知道的要多得多。特别是展开环节用温度切入教学时还安排详细的认识温度计环节,课中才发现学生其实在科学课早已会熟练的应用温度计了,完全没有必要安排这样的学习环节。再如我让学生举例:在生活中,在那里还见过象这样负几的数时,学生竟然举到电池的正、负,尽管这一现象也很好解释,并不产生对本课学习的困扰,但也实实在在是我课前完全没有想到的。可见,课前的预设还要多方面了解学生,多角度思考问题。
如在教学中,发现了预设的过于详细,学生的学习起点定位过低,还有上面所提的认识温度计内容学生已经掌握等,显然应该要调整一下教学的进度内容。可是在课中并没有进行调整,显得课堂学习安排过于简单,时间也比较松散。课后反思,在课中加入摄氏度和华氏度的互化比较合适。首先,西方国家当前就使用华氏度,对面向世界当代孩子来说,这也将成为必备知识。其次,温度计上就有摄氏度和华氏度两种刻度,课堂上又有时间,方便穿插这一内容的学习,同时也增强了课外知识,也能拓宽孩子的视野。
认识负数的教案设计意图篇二
在一至四年级的数学教材里,“数与代数”领域主要教学整数的知识,这些整数都是自然数(0和正整数)。本单元教学负数,是过去小学数学里没有的内容。在小学数学里教学负数的知识(只涉及负整数的初步认识)出于两点考虑:第一,负数在日常生活中的应用还是比较多的,学生经常有机会在生活中看到负数。让他们学习一些负数的知识,有助于他们理解生活中遇到的负数的具体含义,从而拓宽数学视野。第二,适量知道一些负数的知识,扩展对整数的认识范围,能更好地理解自然数的意义。
《数学课程标准(实验稿)》对教学负数提出的具体目标是“在熟悉的生活情境中,理解负数的意义,会用负数表示一些日常生活中的问题”。根据这一教学目标,本单元的教学内容分两部分编排:第一部分是结合现实情境教学负数的意义,让学生初步认识负数,初步能认、读、写负数;第二部分是负数的实际应用,引导学生应用正数和负数表示日常生活中具有相反意义的数量,进一步体会负数的意义。练习一的第1~6题配合第一部分的教学,第7~10题配合第二部分的教学。“你知道吗”介绍我国古代认识和使用负数的情况。本单元结束时,还安排了一次实践活动《面积是多少》,回忆面积的意义、常用的面积单位、长方形面积计算公式,初步建立图形的等积变形思想,培养转化策略,为教学平行四边形等三个图形的面积打下扎实的基础。
1.联系温度和海拔高度的表示方法,初步教学负数的意义。
本单元教学负数的重点是理解它的意义,初步建立负数的概念。生活中有许多具有相反意义的数量,如上升与下降的距离、收入与支出的金额、盈余与亏损的数量……怎样用数学的方法清楚、简便地表示并区分这些具有相反意义的数量?于是人类发明了负数。这些既是负数产生的历史过程,也是教学负数时可采用的素材。本单元教学的第一部分,选择学生经常接触到的气温和具有形象特征的海拔高度为素材,帮助学生初步建立负数的概念。
(1)用负数表示低于零度的温度,学生首次感知负数。
例1精心选择三个城市同一天的最低气温,设计了“创设问题情境----讲解负数知识”的教学线索,让学生有意义地接受负数。教材分三个环节编写:第一是营造需要----用不同的数分别表示零上温度和零下温度;第二是讲解负数的知识,包括正数和负数的表示方法和读、写;第三是通过“试一试”巩固例题教学的知识。
教材通过精心选择的三个最低气温,营造教学负数的氛围。南京的最低气温刚好是0摄氏度,上海的最低气温是零上4摄氏度,北京的最低气温是零下4摄氏度。上海和北京的最低气温是两个不同概念的4摄氏度,怎样用数学的方法分别表示这两个温度,让人一看就明白而且不会发生混淆?这就是教学负数的氛围。为了营造这样的氛围,例题让学生联系各个城市图片右边的温度计说说“能知道些什么”,鼓励他们广泛地交流,包括看到的各个城市的具体气温以及由此想到的上海气温比0摄氏度高,北京气温比0摄氏度低等内容。由此在学生内心产生一种需要:寻找一种比较简便的方法,表示并区分上海与北京的不同气温。
教材把正数与负数结合在一起讲解,有利于突出负数的意义与表示方法,体会正数与负数分别表示具有相反意义的数量。先讲零上4摄氏度与零下4摄氏度分别记作+4℃和-4℃,让学生清楚地看到它们使用了不同的表示方法。再讲“+4”与“-4”的读法,并通过“+4也可以写成4”初步把以前学过的那些大于0的自然数与正数联系起来。
“试一试”让学生独立写出香港、哈尔滨、西宁三个城市某一天的气温,其中两个城市的气温用负数表示,一个城市的气温用正数表示。通过写出这些正数和负数,再次体会负数的意义,巩固在例题中教学的知识。
在教学用正数或负数表示温度的同时,还应教会学生看温度计上显示的温度。如温度计上同时表示摄氏温度与华氏温度,我们生活中经常使用的是摄氏温度,它的标记是“℃”。又如温度计上的零上温度要从零度刻度线往上看,每小格表示1度,每大格表示10度;温度计上的零下温度要从零度刻度线往下看,也是每小格表示1度,每大格表示10度。第7页第6题在温度计上表示某市2004年四个季度的平均气温,也是为了让学生学会看温度计而设计的。
(2)用正数或负数表示海拔高度,丰富对负数的感性认识。
例2用正数表示珠穆朗玛峰的海拔高度,用负数表示吐鲁番盆地的海拔高度。虽然学生缺乏海拔高度的知识,但“高于海平面”“低于海平面”等概念形象具体,有利于学生体会正数和负数分别表示具有相反意义的数量。例题采用“比海平面高”“比海平面低”这样的描述表达了珠穆朗玛峰和吐鲁番盆地的相对高度,用图画帮助学生理解词语的意思。图中把海平面用一条红色虚线凸现,这样,什么是比海平面高、什么是比海平面低,以及需要不同的数来表示和区分这两种数量就显而易见了。通过用+8844米表示海拔8844米,用-155米表示海拔负155米,学生又一次联系实际体会到正数与负数的意义,他们对负数的感性认识就更丰富了。
这道例题里没有讲+8844、-155的读法,这是考虑到学生在前一道例题中已经初步学习了正数与负数的读法,这里把读数的机会留给了学生。
(3)初步揭示正数与负数的概念。
通过两道例题以及“试一试”的教学,已经认识了+4、-4、19、-11、-7、+8844、-155等数。如果把这些数分成两类,那么可以把+4、19、+8844分在同一类,把-4、-11、-7、-155分在另一类。教材告诉学生像前一类这样的数都是正数,像后一类这样的数都是负数,初步揭示了正数与负数的概念。要注意的是,教材没有给正数、负数下定义,只是通过列举的方式让学生知道怎样的数是正数,怎样的数是负数。并联系零上温度、比海平面高的高度都可以写成正数,零下温度、比海平面低的高度都可以写成负数,支持正数与负数概念的形成。
第3页“练一练”第1题,先读一读题中的6个数,再把这些数分别填入正数或负数的集合圈里。可以在填写后让学生说一说,在两道例题里正数分别表示了什么样的数量,负数分别表示了什么样的数量,以加强对正数与负数的理解。第6页第3题在写出5个正数与5个负数之后,也可以对学生提出类似的要求。
教材中的“0既不是正数,也不是负数。正数都大于0,负数都小于0”这些知识不需要我们告诉学生,他们只要联系例题学习的体会完全能够自己得出,教学只要引一引就可以了。这些知识也不需要机械记忆,学生自己得出的知识能够记住,并通过这些知识进一步理解负数的意义。
2.在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
本单元的第二部分以生活中常见的负数为教学内容,让学生体验并尝试在生活中应用负数,从而进一步理解负数的意义。
(1)两道例题设计了不同的教学方法。
例3呈现了一张反映新光服装店今年上半年每月盈亏情况的统计表,在“盈亏金额”栏里有正数,也有负数。教学任务是让学生了解正数与负数在这道例题中分别表示的具体意义,看着统计表里的数据逐一分析各个月是盈利还是亏损,具体的钱数各是多少。还可以分析这半年盈亏的整体状况,包括有几个月是盈余的,有几个月是亏损的……这道例题的教学方法是,先由教材告诉学生“通常情况下,盈利用正数表示,亏损用负数表示”这个规则,再由学生依据规则对统计表里的每个数据作出具体的解释。从而体会正数和负数可以分别表示盈与亏这两种具有相反意义的数量。
例4呈现的是一幅平面图,学校在平面图的中心,它的东、西两个方向2100米处分别是邮局和公园,南、北两个方向1240米处分别是少年宫和超市。这道例题的教学要求是让学生知道在相背运动时,如果一个方向行走的路程用正数表示,那么另一个方向行走的路程可以用负数表示。“开放”是这道例题的特点,表现在两点上。一是情境与问题有开放性。小华从学校出发,沿东西方向的大街走2100米,到了什么地方?这个问题有两个答案,即小华如果向东走,则到达邮局;如果向西走,则到达公园。同样,小华从学校出发,沿南北方向的大街走1240米,到达的地点也有超市或少年宫两种可能。二是解决问题的方法有开放性。在前面的几道例题中,用正数表示零上温度、高于海平面的高度、盈余金额,用负数表示零下温度、低于海平面的高度、亏损金额,这些几乎都是人们已经约定了的,在通常情况下大家都遵循这些表示的规则。在本例中,朝哪个方向行走的路程记作正数,朝哪个方向行走的路程记作负数,一般没有约定,而是在解决问题时临时规定的。如果把向东行走的米数记作正数,那么向西行走的米数就记作负数;也可以把向西行走的米数记作正数,那么向东行走的米数就记作负数。教材充分体现开放性的特点,首先是通过开放的问题情境:小华沿东西方向大街走2100米“到了什么地方”,沿南北方向大街走1240“可以到哪里”,在学生中引发争议,使他们感受到可以用正数和负数区别表示相反方向运动的路程。其次是允许并鼓励学生应用不同的表示规则。在小华沿东西方向的大街行走时,“如果把向东走2100米记作+2100米,那么向西走2100米记作-2100米。”为学生“把向西走2100米记作+2100米,向东走2100米记作-2100米”留出了空间。在小华沿南北方向的大街行走的问题中,要求学生“根据行走的方向和路程,分别写出一个正数和一个负数”,赋予他们按自己的意愿确定表示规则的机会与条件。这样,学生对正数与负数能分别表示具有相反意义的数量会有更深切的体验。
(2)两次“试一试”提出了不同的认知要求。
第4页的“试一试”里,告诉学生新光服装店去年下半年每个月的盈利或亏损的金额,让他们在盈亏的情境中应用负数知识,加强“盈利通常用正数表示,亏损通常记作负数”的印象。与例题相比,这次“试一试”在认知水平上没有提出更高的要求,仅是变换了思维的方向。例题是根据“表示规则”体会统计表里各个正数与负数的具体含义,“试一试”是应用规则把具体现象用正数或负数表示在统计表里。预计学生完成这次“试一试”一般不会有困难。
第5页的“试一试”对学生提出了两点要求:一是写出数轴上的点所对应的数,其中有正数,也有负数。通过写数与读数,尤其是数轴上正数与负数的位置,进一步体会正数与负数表示相反意义的数量,从而更好地理解负数的意义,巩固负数的知识。二是看一看并想一想,-2接近0还是接近2,在数轴上初步感受数序。和例题相比,在认知水平上提出了更高的要求,对各道例题教学的知识与思想方法适度地概括与提升。教学这次“试一试”,要对这两个问题作细致的思考:(1)怎样呈现数轴,使学生理解数轴上已有的0、1、2、4,以及-1、-2、-5等数的意义,有利于继续在方框里填出其他各数。(2)怎样帮助学生初步体会数的排列顺序。下面提供对这两个问题的教学设计,仅供参考。
“你会填一填、读一读吗”的教学可以分三步进行。首先出现数轴,在它的上面有许多间距都相等的点,其中一个点的下面写出数“0”。接着联系在例4中学到的用正数和负数表示相反方向运动的路程的经验(也可以联系其他例题中应用正、负数的经验),出现数轴上的其他已知数。如果从“0”点出发,向东走1步、2步、4步,到达的位置用数轴上“0”右边的点及相应的数1、2、4表示,那么向西走1步、2步、5步,到达的位置应该用“0”左边的点及相应的-1、-2、-5表示。给抽象的数以具体的含义,能帮助学生体会数轴上的点与数之间的对应关系。然后再让学生写出四个框里的数,并说说自己的思考。这样,学生不仅写出了这些数,还联系实际体会了这些数的意义。
联系数轴上的数初步体会数序也可以分三步进行。首先仔细观察数轴上“0”的左边和右边分别是什么样的数,联系“正数都大于0、负数都小于0”体会这样分布的合理性。然后仔细研究正数1、2、3……在数轴上的排列方向是从左往右,-1、-2、-3……在数轴上的排列方向是从右往左,也要联系实际体会这样排列的合理性。最后是观察数轴上的数,回答“-2接近0还是接近2”这个问题,并简单解释其理由。
(3)联系已有的知识与经验,在练习中继续体会正数与负数表示的具体对象。
练习一里继续扩展教学素材,让学生通过水位、升降机的上升与下降,在银行取款与存钱,公共汽车停靠时乘客的上车与下车等感兴趣、能接受的题材,丰富对负数的感性认识,更好地理解负数的意义。这些练习在编写上的共同点是,通过一个已知的数据显示用正数、负数表示的规则,让学生按这样的规则,把同一情境中其他的数分别记作正数或负数。要尽量让学生独立完成练习,一是通过自己读题,独立理解问题情境;二是仔细寻找,独立发现记作正数(或负数)的规则;三是独立完成练习后,交流写出的数以及写数时的思考。对少数有困难的学生,可以在体会“表示的规则”上给予适当的帮助。如第10题表格里“起点站”下面的“+21”表示上车的人数记作正数,起点站上车21人。
在每一道题完成以后,还可以组织学生说说,这道题里什么样的数量记作正数,什么样的数量记作负数,正数与负数在现实情境里表示的数量有什么不同,引导他们主动地体会负数的意义。
3.《面积是多少》让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。
实践活动《面积是多少》安排在平行四边形、三角形、梯形面积计算教学的前面,其任务主要有两个:一是复习并激活已经教学的面积知识,包括面积的意义、面积单位、长方形和正方形的面积公式等。二是让学生体会转化、估计等解决问题的策略,为主动学习其他图形的面积计算打基础。
(1)已有的知识对教学新知识的重要作用大家都很清楚,教材复习旧知不是让学生被动回忆,而是在一个个现实的情境中,主动从记忆中提取,通过解决问题使这些知识处于激活的状态。如,所有的问题都是求平面图形或物体表面的面积,势必会引起对面积概念的回忆;各个求面积的问题使用了不同的面积单位,这就复习了常用的面积单位;有些问题的解决归结到长方形、正方形面积的计算上,这些面积公式在应用中被激活了。
(2)转化作为一种策略包括两层内容:转化的方法和转化的意识。前者是操作层面上的技术,后者是思想层面上的体验。
第10页教学的转化方法是,对图形进行分解与组合(一个大图形可以分解成若干个小图形,这些小图形共同组合成大图形)、分割与移拼(先把一个不规则的图形进行分解,再移动其中一部分或几部分的位置,拼成一个比较规则的图形),在保持面积不变的前提下,实现形状的变化。教学的转化意识是,稍复杂的图形可以等积变形成较简单的图形,求积方法未知的图形可以变成求积方法已知的图形,转化是实现新旧知识相联系的手段,是探索新知识的途径。教材让学生通过解决新颖的、富有挑战性的问题,学习转化方法,体验转化思想,形成自己的策略。
在“分一分、数一数”里教学分解与组合进行图形转化的策略。教材通过问题“你能先把每个图形分成几块,再数一数吗”引导学生把较复杂的不规则图形转化成若干个长方形、正方形的总和。在“移一移、数一数”栏目里教学分割与移拼进行图形转化的策略,通过问题“怎样移动图形中的一部分,很快数出它的面积”既激活学生在前一个活动里初步获得的体验----把复杂的图形转化成长方形(或正方形),又明确指出这里的转化方法----移动图形中的一部分。
这两个活动的教学一般可以分两步进行:第一步是在教材的引导下,学生独立开展转化图形的活动,并数出(算出)图形的面积。第二步是组织学生交流,首先要交流各人的转化方法,让学生一方面体会转化的方法是多样的;另一方面体会各种转化方法有共同点,就是把复杂的图形变成长方形和正方形;还要交流把图形“分一分”“移一移”对计算它的面积起了什么作用。这样,学生得到的就不单是转化的方法,而且体验了转化对解决问题和数学学习的意义。
(3)通过数方格进行估计,也是一种计算图形面积的策略,特别对复杂的、不规则的曲线图形更显得有价值。第11页教材里有三点要引起教学的注意:第一,注意方法的指导。“数一数、算一算”的活动是求池塘的面积,教材先指导学生“把整格的和不满整格的分别涂上不同的颜色”,又指导学生“不满整格的都按半格计算”。前者能使数方格时避免遗漏和重复,从而减少错误,后者能使计算简便,很快得出结果。第二,注意对方法的反思和评价。在算出池塘的面积后,教材让学生反思“这样的算法合理吗”,并通过讨论评价这种方法。教学时可以把教材中的问题拆成两组问题进行反思和评价,先讨论“把整格的和不满整格的分别涂上不同的颜色”的目的是什么,让学生体会这样做的好处,从而变成自我需要、自觉行动。再讨论“为什么把不满整格的都按半格计算”,让学生体会不满整格的有小于半格和大于半格两种情况,把它们都按半格计算是比较合理的。第三,注意方法的发展和应用。“数一数、算一算”的活动还要数方格估计对称的树叶的面积,学生可以创造性地应用估计池塘面积的方法,先得出半片树叶的面积,再乘2得到整片树叶的面积。在“估一估、算一算”的活动里,继续估计其他树叶的面积和手掌的面积。为了便于学生估计,教材在最后的附页里提供了面积是1平方厘米的方格纸,学生不仅能用来完成教材中的练习,还可以结合自己的兴趣,进行更多的估计面积的活动。
认识负数的教案设计意图篇三
课题: 负数的意义主备人:张艳霞备课组长:
2、 知道0既不是正数也不是负数。
1、 自学指导
(1) 自学内容:课本p2―p4
(2) 自学方法:
什么区别。
②p3中存单上有的在数字前写“-”的,你怎么理解说给同桌听。
③ 负数的特点,和正数的区别是什么?
④ 0是什么数?
(3) 自学时间:5′
(4) 自学要求:能够完成自学检测学习部分。
2、自学检测 同桌互评:___
(1)16和-16的区别是( )。
(2)比0还小的数叫( ),负数的特点是正数前面有个( )
(3) 日常生活中你在哪里见过负数,小组内说一说。
探究1:负数的产生
老师和学生们在教室的`温度是()度,当到室外时温度是()度
16℃表示:
-16℃表示:
16℃和 -16℃的意义( )。
探究2:认识正负数。
举例写几个负数:
负数的特点:
-16 读作 负十六-0.4 读作 -1 读作7 -60.8 读作
2.以前学过的数字,没有负号的数叫()数,前面可以写“+”号,也可以不要。
+6.3 读作+1 读作 2
3. 0是正数还是负数?
4.小组说一说在什么地方见过负数?
1.读出下列各数,并指出哪些是正数,哪些是负数?
-7 2.5 +
41 0 -5.2 - +41 53
2.正常水位为0,水位高于正常水位0.2记作___,低于正常水位0.3米记作___。
正常水位为5米,现在水位为6.3m记作 ,低于正常水位
2.5m记作 。
1. 写出下面温度计上显示的气温各是多少,并读一读。
第一层记作( )层。
3. 汽车前进36米记作+36米,后退10米记作()米。
4. 世界上最深的马里亚纳海沟,最深处比海平面底11034米,记作()米。
( )℃。
不多于( ),最少不少于()。
1. +4,+9,+12是正数,―3,―7,―21是负数,5既不是正数,也不是负数。()
2. 负数都小于0。 () 3. 婷婷向东走50米记作+50米,那么她向北走100米,就记作―100米。( )
4 .0可以看成是正数,也可以看成是负数。( )
5.海拔-155米表示比海平面低155米。( )
6.如果盈利1000元,记作+1000元,那么亏损200元就可记作-200元。( )
7.温度0℃就是没有温度。( )
1. 水结冰的温度是( )。
a. 0℃ b. 100℃c. ―1℃
2. 一般来说,适合鱼生活的水温是( )
a. 70℃ b. ―10℃ c. 10℃
认识负数的教案设计意图篇四
1、认识负数:教材第1―6页例1―例4以及练习一
2、实践活动:面积是多少第10―11页
1、使学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、使学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策略,为后面学习多边形面积的计算做些准备。
正数、负数的意义
3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成―5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。
黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切两观,激发学生对数学的兴趣。
应用正数和负数表示日常生活中具有相反意义的数量。
体会两种具有相反意义的数量。
直尺等
上节课我们认识了负数,请你用自己的话书说怎样的数是负数?
正和负是一对反义词,生活中也有很多正好相反的变化,它们也可以分别用正负数来表示。
学生举例(可能有的情况):
2、转入与转出:这个新学期,我们班转出1人,转进3人,怎么表示?
4、上楼与下楼:……
小结:生活中很多具有相反的意思可以分别用正负数表示。
老师选巡视中发现问题较多的题全班交流。
1、复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。
2、让学生体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算做比较充分的知识准备和思想准备。
3、体验数学与生活的练习和数学的实用价值。
对图形进行分解与组合、分割与移拼的转化方法。
你知道这节课学什么么?我们以前学过哪几种图形的面积?
板书:长方形面积=长×宽
正方形面积=边长×边长
1、取图1,问:它是长方形或正方形吗?像这样的图形,我们可以把它叫做不规则图形。
1小格表示1平方厘米,你知道它的面积是多少么?
方法一:数方格。一起数一数,数得74格
方法二:分割法。指名折一折,并指出所折出的形状。注意有两种折法。
折好之后,在每一块长方形上写出求面积的算式。最后再相加求得总面积。
比较两种方法求的结果。
用类似的方法求出图2的面积。学生完成后交流。
小结:复杂的图形,可以分割成几个长方形或正方形,分别求出面积后再求出总面积。
2、移一移,数一数:
观察后说说你能把它变成长方形吗?
剪一剪、拼一拼。你能算出这个拼成的长方形的面积是多少吗?
3、数一数,算一算:
方法:先数整格,可以按顺序标出数字;再把不满整格的当作半格数,最后再相加。
学生数,数完后交流结果。发现会有一定的误差。
指出:由曲线围成的图形,在求其面积的时候会出现一定的误差,这是很正常的。
学生数完后再校对答案。
4、估一估,算一算。
在第126页上的方格纸上,描画出自己的左手,然后再用刚才的方法估算出自己手掌的面积。
交流,得到:通常我们学生的手掌面积是80多到90多平方厘米。
现在你知道怎么求一些较复杂图形的面积了么?
认识负数的教案设计意图篇五
谈话:同学们,上节课老师和你们一起领略了我国的热极—吐鲁番盆地的奇异风光,从中你都收获了些什么?(引导学生复习正、负数的知识)
【设计意图】由于本节课是第二课时,首先以情境引导学生回顾已学知识,提高对原有知识的运用能力,以及继续学习新知识的兴趣。
谈话:上节课我们就知道吐鲁番三月份平均最低气温在零下3℃左右,冬季则到零下10℃左右。你会表示这两个温度吗?(学生写出—3℃、—10℃)
谈话:很好,那么你知道哪个温度更低一些吗?
出示第三个红点问题:—3℃与—10℃哪个温度更低?同学们先来猜一猜,并说说为什么。
讨论:可以用什么方法进行比较?借助温度计比较:学生会发现—10℃表示的温度低。
【设计意图】以上环节充分发挥教师主导、学生主体的作用,根据学生已有的经验,在猜测、观察、交流中通过两个负数的大小比较,进一步理解负数的意义。
1、自主练习第2题(这是一道用正、负数表示温度并比较大小的题目)
①先让学生看懂第2题中每一幅温度计图所表示的温度。
②独立完成用正负数表示这些温度。
③学生独立把这些温度从高到低排列起来。
④集体交流,引导学生说出比较的办法。
2、自主练习第5、7题
①学生认真观察信息图,分析所示信息。
②根据题据独立填统计表。
【设计意图】引导学生在练习中巩固所学知识,提高学生学习的积极性。
1、自主练习第8题(这道题目是用正负数表示现实生活中具有相反意义量的题目)
①先让学生读懂题目,分析题意第8题:某商场上半年的经营情况。
②讨论确定什么情况下用正数表示?什么情况下用负数表示?
③交流得知。习惯上一般将进货、盈利等用正数表示,与之相对应的出货、亏损就用负数表示。
2、自主练习第6题(是进一步巩固正负数意义的题目)
①引导学生观察标签(课前要准备好标签)
②组织学生对“1500±25毫升”和“500±10克”表示的意思充分发表见解。
3、自主练习第9题(是用正负数表示生活中具有相反意义量综合练习题)
①先引导学生分析题意。
②让学生独立完成。
③集体讨论。(对于得分栏的填写,不要提要求,只要学生得出正确结果即可)
【设计意图】通过以上形式练习,激发学生的学习兴趣,而且让学生找出做题的方法和思路,还发展了学生思维的灵活性,进一步提高了学生解决问题的能力,真正让学生体会到数学来源于生活并应用于生活。
谈话:同学们,今天这节课你的收获是什么?你能谈谈自己的感受吗?
认识负数的教案设计意图篇六
认识负数(一)
苏教版五年级数学下册 第一单元 p1—3 练习一 1—5题
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
在现实情景中理解正负数及零的意义。
用正负数描述生活中的现象。
一、 教学例1
1、情境引入。
电脑播放天气预报片头
师:老师收集了某天四个城市的最低温度资料,并用温度计显示。
2、教学用正负数和0表示几个城市某一天的最低气温。
出示图片:香港19摄氏度
师:那一天香港的最低气温是多少度?
师:你是怎么看出来的?
老师介绍温度计的'看法。
出示图片:上海3摄氏度
师:上海的气温是多少摄氏度?
出示图片:南京0摄氏度
师:南京呢?和上海比,南京的气温怎样?
出示图片:北京零下3摄氏度
师:和上海比,北京的气温怎么样?
同时出示上海、南京、北京三地的气温图片。
师:上海和北京的气温一样吗?
师:在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?
3、介绍正负数的读写法。
师:规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。
教学正数和负数的读写法
师:“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(教师板书)
师:现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃
4、练一练
(1)选择合适的数表示各地的气温
(2)小小气象记录员
二、 感知生活中的正数和负数。
师:从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。
出示教科书上的“你知道吗”
2、练一练
三、描述正数和负数的意义
出示:+3,-3,40,-12,-400,-155,+8848
师:你能将这些数分分类吗?按什么分?分成几类?小组讨论。
师:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。
师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。
师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。
练一练
1、先读一读,再把数填入适当的框内。
-5,+26,9,-40,-120,+203
正数 负数
2、每人写出5个正数和5个负数。
读出所写的数,并判断写的是否正确。
3、出示“你知道吗?——中国是最早使用负数的国家”
小结:今天这节课,你有哪些收获?
四、寻找生活中的正数和负数。
师:在生活中,在哪里见到过负数?
学生说出存折,电梯面板等等,并要求说明这些负数的意思
练习一 4
选择合适的温度连一连
冰箱中的鱼 水中的鱼 烧好的鱼
认识负数的教案设计意图篇七
教学目标1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:在现实情景中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
一、引入
老师收集了某天四个城市的最低温度资料,并用温度计显示。
二、新授
1、教学用正负数和0表示几个城市某一天的最低气温。
出示图片:香港19摄氏度
那一天香港的最低气温是多少度?
你是怎么看出来的?
介绍温度计的看法。
出示图片:上海3摄氏度
上海的气温是多少摄氏度?
出示图片:南京0摄氏度
南京呢?和上海比,南京的气温怎样?
出示图片:北京零下3摄氏度
和上海比,北京的气温怎么样?
同时出示上海、南京、北京三地的气温图片。
上海和北京的气温一样吗?
在数学上怎样区分零上3摄氏度和零下3摄氏度的呢?
2、介绍正负数的读写法。
规定零上3摄氏度记作+3摄氏度或3摄氏度,规定零下3摄氏度记作-3摄氏度。
教学正数和负数的读写法
“+3”读作正三,再写的时候,只要在3前面加一个“+”——正号,“+3”也可以写成3。“-3”读作负三,书写时,只要先写“-”——负号,再写3。(板书)
现在,我们可以说那一天上海的气温是+3℃,北京的气温是-3℃
三、练习
(1)选择合适的数表示各地的气温
你还会用这样的方法来记录温度吗?
看屏幕上的温度计,选择适当的卡片举起来。
(卡片上分别写有+12℃、-12℃、30℃、+30℃、-30℃)
对于海口学生有两种不同的选择:+30℃和30℃
对于这两种选择你有什么看法?
(2)小小气象记录员
我们一起来当气象记录员,一边听天气预报,一边记录气温。
四、延伸
感知生活中的正数和负数。
1、认识海拔高度的表示方法
从上面的资料中可以看出,不同的地区有温差,在我国同一地区同一天也有很大的温差。
出示教科书上的“你知道吗”
新疆吐鲁番是我国还把最低的地区,你知道它的海拔高度是多少?
出示海拔高度图
从图中你知道了什么?
以海平面为标准,珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。
你能用今天学的知识表示这两个地方的海拔高度吗?
小结:用正负数还可以区分海平面以上的高度和海平面以下的高度。
练一练
(1)用正数或者负数表示下面各地的海拔高度。(出示海拔高度图)
中国最大的咸水湖——青海湖的海拔高度高于海平面3193千米。
世界最低最咸的湖——死海低于海平面400米。
世界海拔高度最低的国家——马尔代夫比海平面高1米。
(2)说说下面的海拔高度是高于海平面还是低于海平面?
里海是世界上最大的湖,水面的海拔高度是-28米。
五、总结
(出示有关图片)像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。课后请同学们搜集有关负数在生活中应用的资料,下节课来交流。
六、课堂作业
认识负数(第二课时)
教学目标
1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:应用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
一、导入
读一读,分一分。
正数 负数
二、新授
师:老师收集了新光服装店今年上半年每月的盈亏情况,列出统计图。
月 份
一
二
三
四
五
六
盈 亏(元)
+3000
+4200
-1800
+2700
-900
+3700
教学用正数与负数表示盈亏情况的具体意义。
师:通常情况下,盈利用正数表示,亏损用负数表示。
表中哪几个月盈利?哪几个月亏损?
从表中你还能知道些什么?……
试一试
根据新光服装店去年下半年的盈亏情况,填写下表。
七月份:亏损1200元; 八月份:亏损850元;
九月份:盈利2500元; 十月份:盈利4300元;
十一月份:盈利3700元;十二月份:亏损250元;
月 份
七
八
九
十
十一
十二
盈 亏(元)
介绍一下服装店七至十二月份盈亏情况。
三、延伸
1、出示情境图,辨别方向。
2、教学用正数和负数区别表示相反方向运动的路程。
小华从学校出发,沿东西方向的大街走了2100米,到了什么地方?
小华如果向西走2100米,到达公园。
3、试一试:
(1) 你会填一填、读一读吗?
-5 -2 -1 0 1 2 4
说一说你是怎样想的?
(2) -2接近2,还是接近0?
正数和负数在数轴上的排列方向是怎样的?
4、练一练
2、(1)如果张军向东走30米,记作+30米,那么李刚向西走52,记作( )米。
(2)如果张军向北走40米,记作+40米,那么李刚走“-40米”,表示他向( )走了( )米。
四、练习
练习一 第6题。
某市2004年每个季度的平均气温如下表。
季度 第一季度 第二季度 第三季度 第四季度
平均气温(℃)-10 15 20 -5
你能在温度计上表示出这些温度吗?
练习一 第7题。
你能在括号里填上合适的数吗?
(1)升降机上升8米记作+8米,下降5米记作( )米。
(2)一幢大楼18层,地面以下有2层。地面以上
第3层记作+3层,地面以下第1层记作( )层,地面以下第2层记作( )层。
(3)学校举行自然科学知识竞赛,抢答题的评分规则是答对一题加100分,答错一题扣10分。如果把加100分记作+100分,那么扣10分应记作( )分。
练习一 第8题
你能说说存折中红线框处的数各表示什么吗?
妈妈于6月10日又存入2000元,在存折上应记作( )元;6月25日取出400元,在存折上应记作( )元。
五、总结
像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。课后请同学们搜集有关负数在生活中应用的资料,下节课来交流。
六、课堂作业
认识负数的教案设计意图篇八
1、游戏:
我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。
游戏规则:
老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
b、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:
通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:
通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的'最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
(1)交流:
珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:
以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

一键复制