音乐是一种通过声音和音调表达情感和思想的艺术形式。怎样提高写作水平,让文章更具有说服力?总结范文的价值并不在于照搬和模仿,而是通过学习其中的写作思路和逻辑,来启发和指导我们自己的写作过程。
高三数学高考知识点篇一
阅读考试大纲《补充说明》,分别解读如下:
一、考试形式没有变化。
二、试卷结构,总题量减少一道,由往年的22道减为21道。具体如下:
选择题:减少两道,分值减少10分,每题的分值不变,题型依然四选一。
填空题:增加一道,分值增加9分。每题的分值由原来的4分增加到5分,题目的格式也有变化,每题有一空或两空。
解答题:数目不变,分值增加1分。
试题难度要求与往年相当,即“总体难度要适当”。
三、题型示例可帮考生更好理解考试要求和命题结构。考生要仔细研读。
备考建议
鉴于以上分析,提出以下建议:
(1)填空题增加了一道,对准确性的要求提高了,要对此针对训练。
(2)考生要重视对知识的学习和探究,从整体上把握知识脉络,形成知识网络。注重思想方法的领悟,常用的.数学思想方法有:函数与方程的思想,分类讨论的思想,数型结合的思想,转化与化归的思想,有限与无限的思想。
(3)把握四项基本策略:
策略一:知识系统化。要抓住知识的结合点,从中提取归纳重要的数学思想方法;
策略二:方法常规化。即把握通法通理,在通法通理上反复练;对于技巧性强的方法,应尽力挖掘其推广应用的空间。
策略三:问题模型化。每一块有哪些重要题型,哪些典型方法要心中有数,这些典型方法怎样应用,不同的情景中又有哪些注意事项。
策略四:思维多向化。注意逆向思维,等价转化,数形结合等。
(4)对教材新增内容要系统训练,又不能盲目拔高。这一部分包括简易逻辑、向量、线性规划、概率与统计、导数等内容。
[责任编辑:youngliu]
高三数学高考知识点篇二
考点要求:
1.几何体的展开图、几何体的三视图仍是高考的热点.
2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.
3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.
4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.
知识结构:
1.多面体的结构特征。
(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.
2.旋转体的结构特征。
(1)圆柱可以由矩形绕一边所在直线旋转一周得到.
(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.
(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.
(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.
3.空间几何体的三视图。
空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.
三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.
高三数学高考知识点篇三
当命题“若a则b”为真时,a称为b的充分条件,b称为a的必要条件。
二、充分条件、必要条件的常用判断法。
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法。
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为a、b,则:
若a?b,则p是q的充分条件。
若a?b,则p是q的必要条件。
若a=b,则p是q的充要条件。
若a?b,且b?a,则p是q的既不充分也不必要条件。
三、知识扩展。
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;。
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;。
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高三数学高考知识点篇四
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;。
(2)每个基本事件的发生都是等可能的;。
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件a包含了其中m个等可能基本事件,那么事件a发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;。
(2)判断是否是等可能事件,并用字母表示事件;。
(3)求出基本事件总数n和事件a所包含的结果数m;。
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件a包含的基本事件的个数。
高三数学高考知识点篇五
立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号).
2.注意最后一问有应用前面结论的意识.
3.注意分论讨论的思想.
4.不等式问题有构造函数的意识.
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法).
6.整体思路上保6分,争10分,想14分.
高三数学基础不好如何提高成绩。
对于数学基础差的高三学生该如何学习呢?学习数学有哪些简单有效的方法呢?有途网小编与大家分享一下学习的经验。
确定目标适当放弃。
高考数学试卷在试题设计上都是有梯度的,所以我们要根据自己的学习情况,适当的放弃一部分较难的或者目前根本无法实现的内容,把学习精力和重心放在高考必考以及可以突破的这些题目上,对于较难的题目或者无法实现的内容尽量不要花大量时间,当然也不是完全放弃,可以学习一些技巧,掌握一些结论适当的争取一些分数。
一般高考选择题前8道,选择题中前两道,解答题中三道,至于剩余的题目通过一些策略方法争取,其实这个道理大家可能都懂,但问题关键在于即使我们放弃了一部分,剩下的我们必须要会的题目,我们很多同学感觉得分也是非常困难的,往往做了很多练习题,但碰到下一道题目任然无从思考。
高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
多做数学题也很重要。
每当老师讲完课后学生做的就是做作业,这是很正常的,但光做作业是不行的,一定要找大量的题来做,来回巩固不会的题,题目尤其是那些看起来懂有不懂得题目,最好是通过多做题的形式来把这样的题目做熟练,做的题目多了自然就掌握的更加牢固了,所以说,多做题是提高高中数学成绩的一个好方法。但是,做题需要注意的是一定要独立完成,更不能提前看答案在做过程,要养成好的习惯。
学会运用基础知识。
想要提高数学成绩,需要在学会基础知识的同时还要会应用,这样才能在考试中拿到高分。在高中数学的学习特点就是速度快、容量大、方法多。这对于基础差的同学来说,简直就是灾难。很多基础差的同学都会有这样的毛病,就是有时会听了但记不住,记住了却解不出题目。这个时候就需要你做好笔记了,记住关键的思路和结论就可以,不需要面面俱到,课后可以再去整理,这也是再学习的一个过程。
高三数学高考知识点篇六
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号).
2.注意最后一问有应用前面结论的意识.
3.注意分论讨论的思想.
4.不等式问题有构造函数的意识.
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法).
6.整体思路上保6分,争10分,想14分.
高三数学基础不好如何提高成绩。
对于数学基础差的高三学生该如何学习呢?学习数学有哪些简单有效的方法呢?有途网小编与大家分享一下学习的经验。
确定目标适当放弃。
高考数学试卷在试题设计上都是有梯度的,所以我们要根据自己的学习情况,适当的放弃一部分较难的或者目前根本无法实现的内容,把学习精力和重心放在高考必考以及可以突破的这些题目上,对于较难的题目或者无法实现的内容尽量不要花大量时间,当然也不是完全放弃,可以学习一些技巧,掌握一些结论适当的争取一些分数。
一般高考选择题前8道,选择题中前两道,解答题中三道,至于剩余的题目通过一些策略方法争取,其实这个道理大家可能都懂,但问题关键在于即使我们放弃了一部分,剩下的我们必须要会的题目,我们很多同学感觉得分也是非常困难的,往往做了很多练习题,但碰到下一道题目任然无从思考。
高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
多做数学题也很重要。
每当老师讲完课后学生做的就是做作业,这是很正常的,但光做作业是不行的,一定要找大量的题来做,来回巩固不会的题,题目尤其是那些看起来懂有不懂得题目,最好是通过多做题的形式来把这样的题目做熟练,做的题目多了自然就掌握的更加牢固了,所以说,多做题是提高高中数学成绩的一个好方法。但是,做题需要注意的是一定要独立完成,更不能提前看答案在做过程,要养成好的习惯。
学会运用基础知识。
想要提高数学成绩,需要在学会基础知识的同时还要会应用,这样才能在考试中拿到高分。在高中数学的学习特点就是速度快、容量大、方法多。这对于基础差的同学来说,简直就是灾难。很多基础差的同学都会有这样的毛病,就是有时会听了但记不住,记住了却解不出题目。这个时候就需要你做好笔记了,记住关键的思路和结论就可以,不需要面面俱到,课后可以再去整理,这也是再学习的一个过程。
高三数学高考知识点篇七
第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析。主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
高三数学高考知识点篇八
1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。
2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:
(1)试验中所有可能出现的基本事件只有有限个;。
(2)每个基本事件出现的可能性相等.
p(a)a中所含样本点的个数na中所含样本点的个数n.
3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件a的概率为几何概率.几何概率具有无限性和等可能性。
4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的.
计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。
另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。
能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的.能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。
高三数学高考知识点篇九
(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;。
(2)合理安排饮食,提高睡眠质量;。
(3)保持良好的备考状态,不断进行积极的心理暗示;。
(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。
2.悉心准备,不紊不乱。
(1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。
(2)查找错题,分析病因,对症下药,这是重点工作。
(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。
(4)回归课本,回归基础,回归近年高考试题,把握通性通法。
(5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。
(6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。
3.入场临战,通览全卷。
最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:
(1)填写好全部考生信息,检查试卷有无问题;。
(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
高考数学高分知识点。
1.适用条件:[直线过焦点],必有ecosa=(x-1)/(x+1),其中a为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):
(1)若f(x)=-f(x+k),则t=2k;。
(2)若f(x)=m/(x+k)(m不为0),则t=2k;。
(3)若f(x)=f(x+k)+f(x-k),则t=6k。注意点:a.周期函数,
周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称。
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
4.函数奇偶性:
(1)对于属于r上的奇函数有f(0)=0。
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项。
(3)奇偶性作用不大,一般用于选择填空。
5.数列爆强定律:
1.等差数列中:s奇=na中,例如s13=13a7。
2.等差数列中:、-、-成等差。
3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立。
4.等比数列爆强公式:=+qm可以迅速求q。
6.数列的终极利器,特征根方程。(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)。
7.函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外。
(2)复合函数单调性:同增异减。
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8.常用数列bn=n×(2n)求和sn=(n-1)×(2(n+1))+2记忆方法。
前面减去一个1,后面加一个,再整体加一个2。
9.适用于标准方程(焦点在x轴)爆强公式。
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10.强烈推荐一个两直线垂直或平行的必杀技。
已知直线l1:a1x+b1y+c1=0直线l2:a2x+b2y+c2=0。
若它们垂直:(充要条件)a1a2+b1b2=0;。
若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)。
高考数学备考方法。
1、审题要慢,答题要快。
有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。
2、运算要准,胆子要大。
高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。
3、先易后难,敢于放弃。
能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。
4、先熟后生,合理用时。
面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。
高三数学高考知识点篇十
立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
高中数学如何学习?史上最强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
高三数学高考知识点篇十一
1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。
2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:
(1)试验中所有可能出现的基本事件只有有限个;。
(2)每个基本事件出现的可能性相等.
p(a)a中所含样本点的个数na中所含样本点的个数n.
3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件a的概率为几何概率.几何概率具有无限性和等可能性。
4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的.
计数与概率问题在近几年的高考中都加大了考查的力度,每年都以解答题的形式出现。在复习过程中,由于知识抽象性强,学习中要注重基础知识和基本方法,不可过深,过难。复习时可从最基本的公式,定理,题型入手,恰当选取典型例题,构建思维模式,造成思维依托和思维的合理定势。
另外,要加强数学思想方法的训练,这部分所涉及的数学思想主要有:分类讨论思想、等价转化思想、整体思想、数形结合思想,在概率和概率与统计中又体现了概率思想、统计思想、数学建模的思想等。在复习中应有意识用数学思想方法指导解题,不可就题论题,将问题孤立,片面强调单一知识和题型。
能力方面主要考查:运算能力、逻辑思维能力、抽象思维能力、分析问题和解决实际问题的.能力。在高考中本部分以考查实际问题为主,解决它不能机械地套用模式,而要认真分析,抽象出其中的数量关系,转化为数学问题,再利用有关的数学知识加以解决。
高三数学高考知识点篇十二
集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数。
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量。
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式。
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;。
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

一键复制