光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。什么样的计划才是有效的呢?这里给大家分享一些最新的计划书范文,方便大家学习。
高一数学教学计划篇一
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上进取创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二、教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都能够看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了进取探索数学课程与信息技术的整合,帮忙学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不一样需求,为不一样学生供给不一样的发展空间,促进学生个性和潜能的发展供给了很好的平台。例如教材经过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生供给了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化提高中的作用。
5、新教材注重数学史渗透,异常是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三、教学任务与目的1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依靠关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不一样需要选择恰当的方法表示函数。
经过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,经过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的.图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
理解对数的概念及其运算性质,明白用换底公式能将一般对数转化成自然对数或常用对数;经过阅读材料,了解对数的发现历史以及对简化运算的作用。经过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。明白指数函数y=ax与对数函数y=logax互为反函数(a》0,a≠1)。经过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情景。
3、结合二次函数的图象,确定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不一样函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察很多空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。
经过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不一样表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5、以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。经过对很多图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维本事,并用来解决一些简单的推理论证及应用问题、6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。
根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四、教学措施和活动
1、加强团体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的本事,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和本事。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
高一数学教学计划篇二
本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。
1、知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程
③感受类比思想在探究新知识过程中的作用
2、过程与方法
①结合具体问题引入,诱导学生探究
②类比学习,循序渐进
3、情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。
“通过建立恰当的空间直角坐标系,确定空间点的坐标”。
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。
高一数学教学计划篇三
新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
二、教材分析
本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。
三、学情分析
【年龄特点】:
假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。
【认知优点】
一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。
【学习难点】
但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。
四、教学目标
? 知识与技能:
1. 理解子集、v图、真子集、空集的概念。
2. 掌握用数学符号语言以及v图语言表示集合间的基本关系。
3. 能够区分集合间的包含关系与元素与集合的属于关系。
? 过程与方法:
1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、
分析、归纳的能力。
2. 培养学生用数学符号语言、图形语言进行交流的能力。
? 情感态度与价值观:
1.激发学生学习的兴趣,图形、符号所带来的魅力。
2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。
五、教学重、难点
重点:
集合间基本关系。
难点:
类比实数间的关系研究集合间的关系。
六、教学手段
ppt辅助教学
七、教法、学法
? 教法:
探究式教学、讲练式教学
遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。
? 学法:
自主探究、类比学习、合作交流
教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。
八、课型、课时
课型:新授课
课时:一课时
九、教学过程
(一)教学流程图
(二)教学详细过程
1..回顾就知,引出新知
2.合作交流,探究新知
问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?
(1)a={1,2,3},b={1,2,3,4,5};
问题三:你能举出几个集合,并说出它们之间的包含关系吗?
【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。
问题四:对于题目中的第3小题中的集合,你有什么发现吗?
【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合c,d都是所有等腰三角形的集合,集合c中任意一个元素都是集合d的元素 ,同时集合d任意一个元素都是集合c的元素,因此集合c与集合d相等,记作:c=d。
用集合的概念对相等做进一步的描述:
如果集合a是集合b 子集,且集合b是集合a的子集,此时集合a与集合b的元素一样,因此集合a与集合b 相等,记作a=b。
【师生活动2】:教师引导学生以(1)为例,指出a?b,但4∈b, 4?a,教师总结所以集合a是集合b的真子集。
【师生活动】?,并规定空集是任何集合的
4.思维拓展,讨论新知
问题七:经过以上集合之间关系的学习,你有什么结论?
【师生活动】:师生讨论得出结论:
(1)任何一个集合都是它本身的子集,即a?a
5.练习反馈,培养能力
例1写出集合{a,b}的所有子集,并指出哪些是真子集
例2用适当的符号填空
(1)a_{a,b,c}
(2){0,1}_n
(3){2,1}_{x∣x2-3x+2=0}
6.课堂小结,布置作业
这节课你学到了哪些知识?
小结 知识上:
能力上:
情感上:
作业:必做题:p8,3
思考题:实数间有运算,那集合呢?
十、板书设计
十一、教学反思
高一数学教学计划篇四
这节课是在学生已经学过的二维的平面直角坐标系的基础上的推广,是以后学习空间向量等内容的基础。
1. 让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法。
2. 理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系。
3. 进一步培养学生的空间想象能力与确定性思维能力。
:在空间直角坐标系中点的坐标的确定。
(一)、问题情景
1. 确定一个点在一条直线上的位置的方法。
2. 确定一个点在一个平面内的位置的方法。
3. 如何确定一个点在三维空间内的位置?
例:如图,在房间(立体空间)内如何确定一个同学的头所在位置?
在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数。那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数。要确定同学的头的位置,知道同学的头到地面的距离、到相邻的两个墙面的距离即可。
(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)
教师明晰:在地面上建立直角坐标系xoy,则地面上任一点的位置只须利用x,y就可确定。为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可。例如,若这个电灯在平面xoy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3)。
这样,仿照初中平面直角坐标系,就建立了空间直角坐标系o-xyz,从而确定了空间点的位置。
(二)、建立模型
1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义。
从空间某一个定点o引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系o-xyz,点o叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xoy平面,yoz平面,zox平面。
教师进一步明确:
(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系。
(2)将空间直角坐标系o-xyz画在纸上时,x轴与y轴、x轴与z轴成135,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的 ,这样,三条轴上的单位长度直观上大致相等。
2. 空间直角坐标系o-xyz中点的坐标。
在学生充分讨论思考之后,教师明确:
(1)过点a作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点p,q,r,点p,q,r在相应数轴上的坐标依次为x,y,z,这样,对空间任意点a,就定义了一个有序数组(x,y,z)。
这样,在空间直角坐标系中,空间任意一点a与有序数组(x,y,z)之间就建立了一种一一对应关系:a (x,y,z)。
教师进一步指出:空间直角坐标系o-xyz中任意点a的坐标的概念
对于空间任意点a,作点a在三条坐标轴上的射影,即经过点a作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点p,q,r,点p,q,r在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点a的坐标,记为a(x,y,z)。
(三)、例 题 与 练 习
1. 课本135页例1.
注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5)。
2. 课本135页例2
(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?
解:(1)xoy平面、xoz平面、yoz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z)。
(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知长方体abcd-abcd的边长ab=12,ad=8,aa=5,以这个长方体的顶点a为坐标原点,射线ab,ad,aa分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
注意:此题可以由学生口答,教师点评。
解:a(0,0,0),b(12,0,0),d(0,8,0),a(0,0,5),c(12,8,0),b(12,0,5),d(0,8,5),c(12,8,5)。
得出结论:建立不同的坐标系,所得的同一点的坐标也不同。
[练 习]
1. 在空间直角坐标系中,画出下列各点:a(0,0,3),b(1,2,3),c(2,0,4),d(-1,2,-2)。
2. 已知:长方体abcd-abcd的边长ab=12,ad=8,aa=7,以这个长方体的顶点b为坐标原点,射线ab,bc,bb分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标。
3. 写出坐标平面yoz上yoz平分线上的点的坐标满足的条件。
(四)、拓展延伸
分别写出点(1,1,1)关于各坐标轴和各个坐标平面对称的点的坐标。
1、 练习 : 课本p136. 1、2、3
2、 课堂作业: 课本p138. 1、2
高一数学教学计划篇五
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一数学教学计划篇六
我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的a版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上进取创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。
2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都能够看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、信息技术是一种强有力的认识工具,在教材的编写过程体现了进取探索数学课程与信息技术的整合,帮忙学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不一样需求,为不一样学生供给不一样的发展空间,促进学生个性和潜能的发展供给了很好的平台。例如教材经过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生供给了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化提高中的作用。
5、新教材注重数学史渗透,异常是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依靠关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不一样需要选择恰当的方法表示函数。
经过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、了解指数函数模型的实际背景。理解有理指数幂的含义,经过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。
理解对数的概念及其运算性质,明白用换底公式能将一般对数转化成自然对数或常用对数;经过阅读材料,了解对数的发现历史以及对简化运算的作用。经过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。明白指数函数y=ax与对数函数y=logax互为反函数(a》0,a≠1)。经过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情景。
3、结合二次函数的图象,确定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不一样函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、利用实物模型、计算机软件观察很多空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的`直观图。
经过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不一样表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。
根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
1、加强团体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的本事,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和本事。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
高一数学教学计划篇七
本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
知识与技能:
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
通过对比理解截距与距离的区别。
等观点,使学生能用联系的观点看问题。
重点:直线的点斜式方程和斜截式方程。
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
1.教学方法的选择:启发、引导、讨论.
学习活动。
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
高一数学教学计划篇八
(1)随着素质教育的.深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
(1)注意研究学生,做好初、高中学习方法的衔接工作。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
周 次 时 内 容 重 点、难 点
第1周
9.2~9.6 5 集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念
第2周
9.7~9.13 5 集合的基本运算
函数的概念、
第3周
9.14~9.20 5 单调性与最值、
第4周
9.21~9.27 5 指数与指数幂的运算、
第5周
9.28~10.4 5 (9月月考?、国庆放假)
第6周
10.5~10.11 5 对数与对数运算、
第7周
第8周
10.19~10.25 5 方程的根与函数零点,
二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;
第9周
第10周
11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试
第11周
11.9~11.15 5 任意角和弧度制
第12周
11.16~11.22 5 三角函数的诱导公式
第13周
第14周
第15周
第16周
第17周
12.21~12.27 5 平面向量应用举例,
第18周
第19周
1.4~1.10 5 简单的三角恒等变换
期末复习
高一数学教学计划篇九
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
周次 课、章、节 教学内容 备注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 数列的概念与简单表示法,等差数列
4 2.3 等差数列的前n项和
5 2.4,2.5 等比数列及前n项和
6 2.5 考试
7 3.1,3.2 不等关系与不等式,一元二次不等式及其解法
9 考试,复习
10 期中考试
11 1.1,1.2 空间几何体的结构,三视图,直观图
12 1.3 空间几何体的表面积与体积
14 2.3 直线、平面的判定及其性质
15 3.1,3.2 直线的倾斜角与斜率,直线方程
16 3.3 直线的交点坐标与距离公式
17 4.1,4.2 圆的方程,直线、圆的位置关系
18 4.3 空间直角坐标系
19 复习
20 考试

一键复制