每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
数学空间与图形教学案例反思篇一
围绕空间与图形领域的教学内容,我们进行了有主题、有实践、有反思的案例研究,通过课堂这个充满创造的教学领域,获得了一些认识。
例如在教学东南西北时,学生要掌握这四个方位之间的结构:东与西相对,南与北相对;东南西北是依顺时针方向旋转的。这个原理光靠讲解是没用的,我们就把学生带到操场上,让学生在现实空间环境中通过活动来体验这四个方位的内在结构。特别是让学生探究当一个方向确定后,如何来辨别其他三个方向,以此体验顺时针以及方位的顺序。再如在教学三角形“任意两边之和大于第三边”这条原理时,我们按照教材的要求分两个层次教学:先是让学生从五根小棒中任意抓三根围一围,让学生直观感知到有些是可以围成的,有些是围不成的,同时使学生产生一种空间直觉,当两条较短的边合起来小于最长边是围不成的,当两条较短的边合起来大于最长边是可以围成的;接着让学生边围边有序地记录每根小棒的长度,并对此进行必要的分类;最后让学生在空间直觉引领下形成的三边关系几何模型和基于数据寻找三边关系的代数模型这两者的相互作用中抽象出三角形三边之间的关系。从以上两个片断中我们可以看出,只有在操作与实践活动的探究中才能把握几何空间特征和性质的实质,也就是把握空间既要有活动,又要有思考。
2.动态表象能引发学生的空间想象。
例如在圆的认识教学中,通过研究动态的圆来把握实质,其中有两个环节:环节一是让学生用图形纸片研究半径和直径有无数条,并且在同一个圆中所有的半径与直径都相等。在把圆形纸片反复对折的过程中让学生想象会折出多少条半径和直径,有些学生想象成有无数条,有些学生进而认为半径的条数应该是直径条数的两倍,这当然涉及到无限与有限的概念,可见动态研究能引发学生的思考;环节二是把两个小球分别系在一根绳上和一根橡皮筋上,通过不断加速的转动让学生想象,小球划出的图形是什么形状的,为什么一个是圆,一个不是圆,由此引导学生体验圆的本质特征:到定点的距离等于是长的点的轨迹。再如在第一学段教学平移时,引导学生闭着眼睛想象当金鱼的嘴向前移动一格,这条金鱼也向前移动了一格;嘴再向前移动一格,金鱼也向前移动一格,在这样的想象过程中,使学生把部分与整体在平移运动中融合起来,只有达到这样的认识,由点的移动距离来确立物体的移动距离才能得以内化。又如在研究三角形“两边之和大于第三边”时,设计了一组运动的拼搭游戏,三条线段,两条是分开的,让学生想象能否围成一个三角形;再进行变化,把其中一条缩短,能否围成三角形;再把缩短的一条增长,能否围成三角形,第三种情况两条短边之和正好等于第三边时也不能围成三角形,这时让学生展开想象,如果其中一条短边增长一点点,你很难想象到的一点点,你说这时能否围成三角形,让学生在这样的想象中构筑自己的心理图像,由此进一步理解这一原理。这三个案例中都用到了动态的想象,这种想象中不仅包含着图形的变化,更加蕴含着一种数学思考。按照皮亚杰的研究,动态表象是学生数理——逻辑经验生成的源泉,静态表象只能产生物理经验,而空间观念不仅仅是一种印象,更是一种思考,是一种逻辑,是一种内在的把握,所以说几何动态是几何观念形成的源泉。
3.知识是过程与结果的双重建构。
新课程强调学生在学习过程中的感受与体验。所以在编写中为了加强教学的探究性,很多地方都只是展示了知识生成和教学活动的过程,对基本的几何知识和概念都不直接出示。那么,一个章节、一节课的教学究竟要达到什么目标,要总结到什么程度,我们在实践中作了一些探索,也走过了一些弯路。例如我校有一位年轻教师上面积和面积单位这一课时,提供了大量资源和素材让学生围绕物体表面和平面图形,通过看一看、摸一摸、画一画、想一想、比一比把握其大小,应该说学生的活动和体验也较丰富。课后凌老师给我们评课时也充分肯定了这一点,但同时提出了一个建议:是否在学生大量生动的实践活动和感受体验的基础上,引导学生进行必要的抽象和概括,提升到物体表面和平面图形的大小叫面积。这样既有丰富的过程,又有基本的抽象,过程与结果之间相互作用,使学生的理解既稳定又开放,既抽象又具象,由此所形成的认知结构也更有张力。
在案例研究中我们还思考了一些诸如通过空间记忆丰富表象,由此产生组合和联想,最终才能达到想象;空间中既有逻辑推理,更有直观推理和似真推理;解决实际问题、设计现实作品能使学生领悟到空间中的各种关系等等。
数学空间与图形教学案例反思篇二
教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。新一轮课程改革很重要的一个方面是改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。
新课程提倡学生初步学会从数学的角度提出问题、理解问题,并能综合应用所学的知识和技能解决问题,发展应用意识。随着社会主义市场经济体制的逐步形成,股票、利息、保险、有奖储蓄、分期付款等经济方面的数学问题,已日渐成为人们的常识,因此,数学教学不能视而不见,不管实际应用,这样恐怕就太不合时宜了。
学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,我针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。如在"代数式"这节课中,由上节课的一个习题引入,带领学生一起探究得出一个规律5n+2,由此引出代数式的概念。在举例时,老师指出,"其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,老师说几个事实,谁能用代数式表示出来。这些式子除了老师刚才说的事实外,还能表示其他的意思吗?"学生们开始活跃起来,一位学生举起了手,"一本书p元,6p可以表示6本书价值多少钱",受到启发,每个学生都在生活中找实例,大家从这节课中都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。
合作探究会给学生带来成功的愉悦。例:"统计图的选择"教学设计和教学中,要求学生以4人小组为单位,调查、了解生活中各行各业、各学科中应用的各种统计图,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。
在学生上网查询,精心设计、指导下,成功地进行了"我是小小设计师"的课堂活动:这节课是以七年级数学上册第26页3题的作业为课题内容设计的一节课,以圆、多边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。
在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。
数学空间与图形教学案例反思篇三
一、创设合理的教学情境。
《全日制义务教育数学课程标准(实验稿)》十分强调数学与现实生活的联系,透过教学使学生“认识到现实生活中蕴涵着超多的数学信息,数学在现实世界中有着广泛的应用;应对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻求解决问题的策略;应对新的数学知识时,能主动地寻求其实际背景,并探索其应用价值。”在教学中我密切联系学生生活实际,由于学生对教材中“罚点球”这个词比较陌生,个性是女学生平时不爱看球赛,如果以足球比赛中的“罚点球”创设情境显然激不起学生的兴趣,为此,我把足球比赛换成了学生感兴趣的世界乒乓球比赛,让学生帮忙国家女子乒乓球教练选一个优秀队员参加比赛。由于学生对乒乓球比赛较感兴趣也更容易懂,所以学生透过说一说或是同伴互相探讨,很快就想到能够看谁的获胜效率高就派谁去,从而较容易地引出本节课要学的资料。
二、密切数学与生活的联系。
数学来源于生活,因此要让学生更多地联系实际,贴近生活,到达生活知识数学化。把生活中的鲜活题材引入课堂。
在学生理解了百分数的好处及读写后,我之后问学生,老师昨日让你们找的带有%的数就是百分数,你们找到了吗?在哪找的,容易找到吗?然后再让学生汇报所找的百分数,并结合在前面得出百分数好处中说出自我搜集的百分数所表示的好处。教师结合学生的说法出示各种图片引导学生说出其中所表示的好处,在学生熟知的生活情景中理解百分数的好处,例如:姚明加盟nba联赛的第一年,投篮命中率为49·8%。,加深百分数好处的理解。并进行环保教育,每一个题材的选取,我都从学生熟悉的生活情景和感兴趣的事物出发,为他们带给了观察比较、探索研究、归纳总结的机会,使学生感受到数学的趣味和作用,体会到了数学就在身边。
三、课后自我评价。
课后,我让学生用百分数评价自我的知识目标的完成状况,并用百分数描述自我的情感态度:“这节课立刻就要结束了,在这节课里你必须和老师一样紧张过,兴奋过或许还有一丝遗憾,你能用百分数来告诉大家人愉快、紧张、遗憾这三种情绪所占的百分比吗?(课件出示)愉快%;紧张%;遗憾%。
四、课后反思。
有这样一句话:任何一种有效的,成功的教学,都务必是有学生主体参与的。换句话说,没有学生主体参与的教学,不是成功的教学。在执教《百分数的认识》这一课中,从学习目标的拟定到评价,我都没有让学生主动探究自我得出百分数的好处,总是怕学生不会,教师留意翼翼的一步一步采用一问一答式,学生的主体性都没有发挥出来。课堂虽然活跃,但是没有体现本课题“促进学生自主探究”的意图。在课的开始时引入新课出示百分数时教师其实能够问“同学们,对于百分数,你想了解些什么?”这一问题,激发了学生主动学习的欲望。“我想明白什么叫百分数?”、“我想明白百分数在什么时候用?”、“我想明白百分数与分数有什么区别?”……这一系列的疑问经过整理后,就更能激起学生主动探究学习目标,到达更好的教学效果。
数学空间与图形教学案例反思篇四
这节课是在学完正、反比例、一次函数,认识了一元二次方程之后的二次函数的第一节课,从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
整节课的流程可以这样概括:学生感兴趣的简单实际问题——引出学过的一次函数——复习学过的所有函数形式——设问:有没有新的函数形式呢?——探索新的问题——形成关系式——是函数吗?——是学过的函数吗?——探索出新的函数形式——概括新函数形式的特点——将特点公式化——形成二次函数定义——有练习巩固定义特点——返回实际问题讨论实际问题对自变量的限制——提出新的问题,深入讨论——课堂的小结,这样设计一气呵成,感觉上无拖沓生硬之处,最关 键的是我认为这符合学生的基本认知规律,是容易让学生理解和接受的。
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释。
数学空间与图形教学案例反思篇五
在数学中,加法是一种常用的计算方法,也是基础的基础,由于本课是学生第一次正式接触加法,因此学好这一课,对以后的数学学习至关重要。虽然,在学生以往的生活经历中,一些日常问题的解决使得他们对加法产生了或多或少的朦胧印象,但是,让学生真正地了解加法并运用加法解决问题,这还是第一次。因此,本节课教学的重难点是:让学生真正理解加法的含义并能运用加法去解决实际问题,用数的组成知识去做加法。
一、导入凸显分与合的思想。
加法的含义来自于分与合的思想。在教学开始时,以几组变式的分与合作为基础,铺垫让学生初步感受今天我们要用分与合来解决新问题。
二、从算理中教学。
在例题教学时,我通过图意变化,引导学生看变化的过程,说清图的意思。(校园里3个小朋友在浇花,又来了2个)。同时以提问的方式出现第三句话:一共有几个小朋友?给学生初步建立条件与问题的概念,了解看图是要解决问题。大部分学生已经能够看图列出加法算式:3+2=5。这部分是学生的已有经验,我把重点放在了算式含义的讲解,计算教学重在算理。我采用了接受式学习方式,“+”学生已经认识,而是通过口头语言和肢体语言让学生感受“+”的意义是合起来,将形象上的“合”和意义上的“合”结合起来。算式“3+2=5”中“3”、“2”、“5”的意义解释,学生能够结合具体情境来解释,说明学生能够理解数的意义了,学生能够通过分与合的经验说出算式的意义,让学生经历形象——数——符号——语言——初步将意义整合,最后将“3+2=5”意义精简为“3和2合起来是5”。
三、用今天学习的知识解决实际问题
不同层次的练习符合能力的需要,重在拓展学生的能力。
摆一摆、说一说,将摆说结合,将动作和语言相连接。
看算式,摆一摆则是对数形的结合。
说一说、填一填。让学生观察情境图,学生能够自己看图说意思、提问题、列算式。通过情境的变化,发现三道 算式中的规律,先是有经验的积累算式,再由现象观察算式,到分析算式、比较归纳。
算一算、填一填。直接写出得数,比较“2+1=3”和“1+2=3”之间的规律:加号前后交换位置的得数不变,再通过找到的规律让学生自己找算式,充分给学生空间拓展能力。
送信连一连。将连线题和有序的排一排结合在一起,将得数是5的算式全部找到。这部分环节让学生自己动手,上黑板排序、说一说,体现了学生是课堂的主体这一数学思想。
看一看,列算式。出现整幅综合图,让学生自己从图中找信息,列出相应的加法算式。学生能够充分的说图意,列出不同形式的加法算式,说明学生不但会计算,还能通过加法来解决实际问题。
四、总结突出算理。
本节课的总结关键就突出“+”的含义——合起来。在课的最后再回到导入的铺垫,用分与合的知识解决加法计算。
这节课还存在许多不足的地方。我可以通过语音语调来吸引学生的注意,而不是一味高调;在送信环节,学生一开始出现从大到小、从小到大的顺序排列,在这里可以放手让学生自己再去排一排,学生能够根据分与合的联系出现两组算式,让学生认识事物的对比过程,自主的找到算式之间的联系,而不是教师自主将这一环节延后出现;在教学中还要充分注重教是为学服务的。

一键复制