总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中可以改进提高,趋利避害,避免失误。总结怎么写才能发挥它最大的作用呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。
高中数学知识点总结电子版高中数学知识点总结非常全面篇一
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1)元素的确定性;
2)元素的互异性;
3)元素的无序性。
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
1)用拉丁字母表示集合:a={我校的篮球队员}b={12345}。
2)集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:n
正整数集n_或n+整数集z有理数集q实数集r
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a:a。
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
4、集合的分类:
1)有限集含有有限个元素的集合。
2)无限集含有无限个元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
1、“包含”关系子集
注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合。
反之:集合a不包含于集合b或集合b不包含集合a记作ab或ba。
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设a={x|x2—1=0}b={—11}“元素相同”
结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b。
①任何一个集合是它本身的子集。aa
②真子集:如果a?b且a?b那就说集合a是集合b的真子集,记作ab(或ba)
③如果abbc那么ac
④如果ab同时ba那么a=b
3、不含任何元素的集合叫做空集,记为φ。
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
1、交集的定义:一般地,由所有属于a且属于b的元素所组成的集合叫做ab的交集。
记作a∩b(读作”a交b”),即a∩b={x|x∈a,且x∈b}。
2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做ab的并集。记作:a∪b(读作”a并b”),即a∪b={x|x∈a,或x∈b}。
3、交集与并集的性质:a∩a=aa∩φ=φa∩b=b∩a,a∪a=a,a∪φ=aa∪b=b∪a。
4、全集与补集
(1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)
记作:csa即csa={x?x?s且x?a}。
(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用u来表示。
(3)性质:⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u。
高中数学知识点总结电子版高中数学知识点总结非常全面篇二
如果函数y=f(x)在开区间i内每一点都可导,就称函数f(x)在区间i内可导。这时函数y=f(x)对于区间i内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。导函数简称导数。
1、利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
2、用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间。
高中数学知识点总结电子版高中数学知识点总结非常全面篇三
奇函数的例子有x、sin(x)、sinh(x)和erf(x).
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.
偶函数的例子有|x|、x2、cos(x)和cosh(x).
偶函数不可能是个双射映射.
高中数学知识点总结电子版高中数学知识点总结非常全面篇四
①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,…,xx研究,我们称它为样本。其中个体的个数称为样本容量。
(2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
(3)简单随机抽样常用的方法:
①抽签法;
②随机数表法;
③计算机模拟法;
④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保证程度。
(4)抽签法:
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查

一键复制