在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
萃取精馏的概念萃取精馏物性方法篇一
;摘 要:化工行业的繁荣发展,是拉动我国经济发展的重要动力,也为社会转型提供了保障。对于丁烷-丁烯的分离,在化工生产中较为常见,不仅能够增强企业的经济效益,而且具有良好的社会效益。在分离丁烷-丁烯的过程中,通常会采用萃取精馏法,能够在保障分离效率的同时,增强其分离纯度。本文将对萃取精馏法的原理与工艺进行分析,探索当前萃取精馏法分离丁烷-丁烯的研究现状,同时明确分离操作中的关键技术,对萃取精馏法分离丁烷-丁烯的未来发展趋势进行预测与分析。
关键词:萃取精馏法;分离;丁烷;丁烯;研究进展
c4会产生于延迟焦化装置和催化裂化装置当中,只有有效利用c4馏分中的组分,才能促进企业生产效益的提升,促进资源的高效化利用。正丁烯、异丁烷、异丁烯、正丁烷和1,3-丁二烯等,是c4馏分的主要组成。萃取精馏法的运用,能够实现对1,3-丁二烯的分离,使其应用于生产当中。为了能提升异丁烯的利用率,应该使其转化为甲基叔丁基醚,这就需要设置醚化装置使其与甲醇发生化学反应。与此同时,要重视对正丁烯和正丁烷的分离,促进其利用效率的提升,满足企业的生产需求。萃取精馏法通常会应用于丁二烯和丁烯的分离当中,但是由于正丁烷和正丁烯的微观机理与其相似,因此该方法也能得到良好应用。在分离操作当中,应该在明确其基本原理的基础上,实现对关键技术的控制。
在待分离溶液当中加入特定溶剂后,能够对其相对挥发度进行改变,运用普通精馏的方法对混合液进行分离。萃取剂的应用是保障其分离效果的关键,应该互溶于待分离组分当中,但是不会有恒沸物的产生。与此同时,能够使其在塔釜中排出,使其得到循环利用。在烷烃当中不存在流动电子云,而一对流动电子云则存在于烯烃当中,两对流动电子云存在于二烯烃当中。电子云受到溶剂不同的吸引力,它随电子云流动性的增强而提升。萃取精馏塔是在萃取精馏中的核心设备,底段、中段和顶段是其主要组成。对于轻组分的提馏主要在底段完成,轻组分的提浓则在中段完成;在顶段当中,能够有效分离溶剂和轻组分,以便回收利用溶剂。
2 研究现状
在1998年,我国采用吗啉-nfm作为萃取剂,实现了对正丁烯和丁烷的分离,生产工艺受到回流比、剂油比和溶剂组成的影响。在2000年,烟台大学采用甲乙酮和极性溶剂氮-甲酰吗啉混合物作为溶剂,能对丁烷和丁烯进行萃取精馏,这有效促进了分离效率的提升。而在2005年,则采用环丁砜、极性溶剂氮-甲酰吗啉、n-二甲基酰胺等混合物作为溶剂,能够实现对丁烷和丁烯的萃取精馏,对塔釜的操作温度進行有效控制。
3 关键技术
回流比的确定是萃取精馏法分离丁烷-丁烯的关键,同时为了对其相对挥发度进行改变,应该确保溶剂选择的合理性。首先,应该确保其选择性。在对组分间的相对挥发度进行提升的同时,应该避免出现较大用量的问题。其次,应该确保其溶解性能较强。再其次,应该确保其沸点相对较高。溶剂的此类特点是防止恒沸物形成的关键,能够实现对溶剂的回收利用,降低分离成本。最后,还应该确保溶剂具有良好的热稳定性,防止在应用中发生化学反应。此外,为了降低生产成本,应该对溶剂的经济性进行考量。二甲基甲酰胺、呋喃、氮甲酰吗啉和nmp等,是几种较为常见的萃取剂类型。在实际分离工作当中,应该针对不同溶剂的特点进行计算机模拟,在定量测定的过程中,通常会使用平衡蒸馏仪和气相色谱。产品质量会受到萃取精馏塔回流比的影响,也会对生产成本产生影响。循环回流速率和浓度之间的关系用回流比表示,相对挥发度会随着溶剂浓度的升高而增大,在控制投资费用时,应该适当控制其回流比。
4 发展趋势
首先,应该改进与优化萃取精馏设备。在对丁烷-丁烯进行分离时,通常会存在较大的汽液相负荷,应该对塔板进行优化与改进,以促进其生产效率的提升,能够有效防止汽液相分布不均匀问题出现在塔板当中。为了促进板效率和精馏塔处理能力的提升,可以设计新型多溢流复合斜孔塔板,其中采用了两根降液管。在设计萃取精馏塔时,也可以运用短内筒结构和分隔壁,能够简化萃取精馏的流程,减少在分离操作中的设备。由于回流比的减少,其设备能耗也会得到有效控制,降低了萃取精馏的成本投入。在化学工程的发展过程中,应该实现工艺与设计的融合,对塔设备和塔板进行改良,以提升萃取精馏的实际效果。其次,还可以采用加盐萃取精馏的方法。生产成本会由于溶剂用量的提升而增加,同时会降低塔板效率。结合溶盐精馏和普通萃取精馏的方式,通过加盐萃取精馏能够对盐析效应和岩溶效应进行有效控制。
5 结语
为了实现对c4的高效利用,应该实现对丁烷-丁烯的有效分离,促进企业经济效益的提升,满足其长远发展需求。萃取精馏法在分离丁烷-丁烯中较为常用,尤其是在当前萃取剂性能与设备先进性不断提升的趋势下,萃取精馏法的应用效果能够得到有效保障,促进生产效率的提升。尤其是在节能减排理念下,萃取精馏法的应用会更加广泛。
参考文献
相关热词搜索:;萃取精馏的概念萃取精馏物性方法篇二
萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。
关键词:萃取精馏;间歇萃取精馏;萃取剂选择
abstract
萃取精馏按操作形式可分为连续萃取精馏ced(continuousextractive distillation)和间歇萃取精馏bed(batch extractive distillation)。
1.1 连续萃取精馏
连续萃取精馏一般两个塔同时进行,即萃取精馏塔和溶剂回收塔。连续萃取精馏操作稳定,投资较大,至少需要多加一套溶剂回收装置,处理物料和产品组成比较固定。
萃取精馏的流程设计很重要,a、b两
间歇萃取精馏操作方式首先由yatim.h[2]于1993年提出,是近年来发展起来的具有间歇精馏和萃取精馏双重优点的新型分离过程。间歇萃取精馏在近沸物和共沸物的分离方面显示出了独特的优越性:通过选取不同的溶剂,可完成普通精馏无法完成的分离过程;设备简单,投资小;可单塔分离多组分混合物;设备通用性强,可用同一塔处理种类和组成频繁改换的物系;同间歇共沸精馏相比,萃取剂有更大的选择范围;同变压精馏比较,有更好的经济性。根据萃取剂加入方式,间歇萃取精馏可分为:一次加入方式间歇萃取精馏(bed)和连续加入方式间歇萃取精馏(cbed),如图1.1所示。
图1.1间歇萃取馏溶剂加入方式
1.2.1 一次加料方式间歇萃取精馏
一次加料方式间歇萃取精馏是在操作过程中,萃取剂一次性加入含有物料的塔釜再沸器中,然后按间歇精馏操作,由于萃取剂一般均为沸点较高的物质,故萃取剂主要在再沸器中发挥其改变轻重关键组分相对挥发度的作用,而不能充分利用精馏塔的各块塔板,因此,对物系分离效果较差,且随组分馏出、釜液组成发生改变,所需萃取剂量需增加才能保证产品质量,所以虽然此操作可行,但经济价值低,故实际研究应用较少。
1.2.2 连续加料方式间歇萃取精馏
1.不加溶剂进行全回流操作(r=∞,s=0);
2.加溶剂进行全回流操作(降低难挥发组分在塔顶馏分中的含量,r=∞,s0); 3.加溶剂进行有限回流比操作(馏出易挥发组分a的成品,r∞,s 0); 4.无萃取剂加入状况下的有限回流比操作,回收萃取剂(r∞,s=0)。
分批萃取精馏按照加料方式不同可分为一次模式与半连续模式[5]。一次模式中.萃取剂与料液一次性加入再沸器。由于再沸器体积有限,一次模式限制了加料量。对于这种模式,找到最佳萃取剂比是增大产量的一个重要因素。由于萃取剂和料液仅在再沸器中有接触,萃取剂的萃取作用发挥有限,一次模式的研究并不多见。
(1)预热塔板,使每块塔板上都含有处于沸点的轻重组份混合物;
(4)在一定的时间内,用最小的溶剂量得到指定纯度和量的产品(准则4)。
这些准则在模拟计算时可方便使用,但在试验中使用这些标准却很困难,因为有太多参数需要保持恒定。为此,kerkho和mujtaba[7,8]综合这些准则,提出一个评估步骤2和步骤3的目标函数。
ctp1p1xd,asdap2sfp3t
ct4p4sdbp2sut4p3t4
koehler[10]最早进行分批萃取精馏的工业应用研究。他利用普通的分批精馏设备作为分批萃取精馏的主体设备,该填料塔有20个理论级,采用半连续操作模式,塔釜中的料液经过循环泵进换热管装置被加热和蒸发。
其试验分两步进行:
(1)按照过程优化的要求,调节从塔顶连续加入的萃取剂的流率。塔顶得到的水和轻组份经过塔顶分离器分为两相,水从塔顶回流到塔中,轻组份进入贮槽。
(2)停止加入萃取剂,存贮槽中的馏份进入已排空的塔釜中,进行分批精馏。koehler选择的物系不符合萃取精馏的严格定义,萃取剂与组份形成了共沸物且试验中有两相出现。且试验对萃取剂的回收也未考虑。尽管koehler对分批萃取精馏工业化的论述有不足之处,其工作对分批萃取精馏工业化的研究仍有重要的参考价值。
2.2 间歇萃取精馏
带有中间储罐的间歇精馏塔这种结构首先由robinson和gilliland于1950年提出[11],最初主要用于分离双组分物系,hasebe等[12]提出利用中间储罐塔来分离三组分物系,直到1995年,safrit等[13]提出将带有中间储罐的间歇精馏塔引入间歇萃取精馏操作,运用带有中间储罐的间歇精馏塔进行间歇萃取精馏分离[14],很好地解决了常规萃取精馏塔需要大型再沸器的这一问题。运用这种工艺,产品分离过程中,由于萃取剂被不断采出回收,大大减轻了再沸器负荷,从而减少设备投资,尤其适合于难分离、需采用大溶剂比的分离体系;另外,带有中间储罐的间歇萃取精馏塔由于物料一次性加入中间储罐,因此可在相对于常规间歇萃取精馏操作时间短的情况下同时得到三个产品,塔顶馏出轻关键组分,塔底回收萃取剂,中间储罐累集并最终得到浓度较高的重关键组分。
带有中间贮罐的间歇萃取精馏塔根据中间贮罐的汽液流动情况,可分为五种[15],如图2.2所示。
图2.2 带有不同流型中间贮罐的萃取精馏塔示意图
最近,国内学者[16]提出了带塔底储罐的分批萃取精馏和伴有简单蒸馏回收的分批萃取精馏两种新的操作方法。如图1.5和1.6所示,在带塔底储罐的分批萃取精馏操作过程中,加入的萃取剂和塔内回流液直接流入塔底储罐,不再返回塔釜;而伴有简单蒸馏回收的分批萃取精馏操作过程中除兼具了前者的特点外,又增加了精馏过程中同时进行溶剂简单回收这一操作手段。此方法经实验研究较为成功。
1-塔釜;2-塔底储罐;3,4-阀门;
1-常规再沸器;2-简单蒸馏再沸器;
5-精馏塔;6-冷凝器
伴有简单蒸馏回收的分批萃取精馏[17,18]是在分批萃取精馏操作过程中,加入的萃取剂和塔内回流液直接流入塔底贮罐,不再返回塔釜,直接流入塔底储罐;又增加了溶剂简单蒸馏浓缩这一操作手段。该工艺避免了因溶剂的不断加入而造成塔釜液体体积不断增大,且将萃取精馏与溶剂浓缩同时进行,缩短了操作时间。在精馏过程中,原料一次加入再沸器。简单蒸馏釜用于存储塔内回流液体(包括待分离组分及溶剂),并进行简单蒸馏,将其中的待分离物料蒸到再沸器中以回收溶剂。
主要操作步骤为:
3.具有较高的沸点和具有足够低的凝固点,不与原组分形成共沸物;
8.与进料物料要有足够的密度差,使两相逆流流动和分离容易; 9.价格适宜,来源丰富。
萃取剂有两大类:单一溶剂和混合溶剂[19](主要指双组分及双组分以上多组分组成溶剂)。单一萃取剂就是采用一种化合物作为萃取精馏过程的萃取剂;目前单一萃取剂的研究,是研究比较成熟的领域。混合溶剂是在单一萃取剂的基础上再加上一种或几种化合物,所加入辅助溶剂的主要作用就是在保证原单一萃取剂具有高选择性的前提下,改善原单一溶剂的溶解性,使其更大限度地改变待分离物系轻重组分之间的相对挥发度,使分离过程更加容易。研究表明混合萃取剂比单一萃取剂在相同条件下有更高的选择性,混合萃取剂的选择性不仅与主萃取剂密切相关而且还与辅助萃取剂有着直接的关系。
3.2 萃取剂的选择方法
3.2.1 试验法
试验法是通过测定在加入萃取剂后共沸物系轻重组分之间的汽液平衡数据,然后计算其选择性参数和相对挥发度,来判断选择的萃取剂是否能打破待分离的共沸体系及过程分离的 难易程度,进而对溶剂进行筛选,这种方法是所有萃取溶剂选择方法中最准确的,但投资大,周期长,经济性差。试验法是通过气相色谱等设备测定体系汽液平衡数据或无限稀释溶液的活度系数,主要包括:色谱法(停留时间法)、稳态法、沸点升高测定法和平衡釜法、稀释器技术法[20]等方法。前三种方法仅适用于纯溶剂的选取,稀释器技术法不仅适用于纯溶剂的选取,而且适用于混合溶剂的选取,使用更为普遍。
3.2.2 经验法
经验法一般用于预选溶剂,因为萃取精馏过程的成功实现主要依靠溶剂与被分离关键组分分子间作用力的差异,依据拉乌尔定律,分子间作用力越大,对拉乌尔定律的偏差越大。因此,可根据实际情况,通过一定的前提假设,将常见的有机物按偏离拉乌尔定律的程度与方向(正偏差、接近理想、负偏差)进行分类,并制成表格。当前选取萃取溶剂的主要经验方法有welle方法[21]、tassrons方法[22]和d robbins方法[23]等。
3.2.3 热力学方法
3.2.4 计算机辅助分子设计方法(camd)camd(computer-aided molecular design)法是指通过计算机利用各种选择指标,设计或具体选择最佳溶剂。可分为计算机辅助分子设计方法和计算机优化筛选方法,有时二者也结合使用。计算机辅助分子设计方法(camd)首先预选一定结构的基团,然后按照某种规律组合成分子,并依据所设定的分子目标性质进行筛选,在众多有机物中逐渐缩小搜索范围,最终找到所需的优化物质。近年来,camd方法已经较深入地应用于化工生产技术的研发[26]。
3.结合溶剂要求,淘汰不符合规定的溶剂; 4.考虑进料板位置、溶剂比、回流比等因素,对分离过程进行进一步优化,最后选定溶剂。
3.2.5 人工神经网络方法(ann)ann(artificial neural network)方法建立在现代神经科学技术研究成果的基础上,借鉴神经系统的结构和功能,针对其它学科和研究领域进行数学抽象、简化、模拟,是一种高级的、先进的新型信息处理和计算系统。由于系统处理过程中参数的选取缺乏全面性以及所需的数据库不完全,至今仍处于初级研究阶段。
结语
萃取精馏的概念萃取精馏物性方法篇三
在基本有机化工生产中,经常会遇到组分的相对挥发度比较接近,组分之间也存在形成共沸物的可能性。若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。
(3)沸点:溶剂的沸点应高于原进料混合物的沸点,以防止形成溶剂与组分的共沸物。但也不能过高,以避免造成溶剂回收塔釜温过高。目前萃取精馏溶剂筛选的方法有实验法、数据库查询法、经验值方法、计算机辅助分子设计法用实验法筛选溶剂是目前应用最广的方法,可以取得很好的结果,但是实验耗费较大,实验周期较长。实验法有直接法、沸点仪法、色谱法、气提法等。实际应用过程中往往需要几种方法结合使用,以缩短接近目标溶剂的时间。溶剂筛选的一般过程为:经验分析、理论指导与计算机辅助设计、实验验证等。若文献资料和数据不全,则只有采取最基本的实验方法,或者采取颇具应用前景的计算机优化方法以寻求最佳溶剂。
萃取精馏按照其操作方式可以分为两类,即连续萃取精馏和间歇萃取精馏。
连续萃取精溜过程中,进料、溶剂的加入及回收都是连续的。连续萃取精馏一般采用双塔操作,第一个塔是萃取精馏塔,被分离的物料由塔的中部连续进入塔内,而溶剂则在靠近塔顶的部位连续加人。在萃取精馏塔内易挥发组分由塔顶馏出,而难挥发组分和溶剂由塔底馏出并进入溶剂回收塔。在溶剂回收塔内,可使难挥发组分与溶剂得到分离,难挥发组分由塔顶馏出,而溶剂由塔底馏出并循环回送至萃取精馏塔。
3.2 间歇萃取精馏
(1)溶剂的进料速率保持不变,改变回流比;
(3)同时改变回流比和溶剂进料速率。
化学及石油化工等领域中,萃取精馏主要用于两个方面:一是沸点相近的烃的分离,如最典型的丁烯与丁二烯的分离,两者沸点相差只有2℃,相对挥发度为1.03;二是共沸物的分离,如甲醇一丙酮、乙醇一乙酸乙酯以及乙醇和醋酸等有机物水溶液。萃取精馏的优点是增加了被分离组分之间的相对挥发度,使难分离物系的分离能够进行;缺点是加入的萃取剂量较大,增大了分离过程的能耗。因此,对萃取精馏进行改进,对强化分离过程具有重要意义。加盐萃取精馏既解决了溶盐精馏中盐的溶解和运输问题,又改进了萃取精馏中萃取剂用量大、塔板效率低的缺点。但是,加盐萃取精馏在实际应用过程中,还存在盐的回收及结晶等问题,有待进一步完善。加盐萃取精馏技术的主要应用研究如下。
加盐萃取精馏最早被应用在无水乙醇的生产中。段占庭等""以无水乙醇为制取对象,分别采用含氯化钠、氯化钙、醋酸钾等9种盐的乙二醇溶液为溶剂,测定了相关的汽液平衡数据,经过比较,优选出了醋酸钾一乙二醇复合溶剂,用于工业制备乙醇。实践表明,乙二醇的用量减少了75%~80%,相同产量的操作时间比普通精馏缩短了65%~75%。赵林秀等用改进的汽液平衡釜测定了101.3kpa下醋酸甲酯一甲醇物系在萃取剂和盐存在下的相对挥发度,测定了全浓度范围内的汽液平衡数据,并进行了加盐萃取精馏工艺的实验。结果表明,水作为萃取剂,加入醋酸钾,可提高醋酸甲酯一甲醇物系的相对挥发度,加盐萃取精馏比普通精馏有优势,当溶剂体积比为1:1时,萃取精馏塔塔顶采出的醋酸甲酯的质量分数可达到99%以上,萃取剂回收率达98%,盐可全部回收。异丙醇和水形成共沸物系,共沸点为80.3℃。为获得高纯度的异丙醇,柳阳等采用间歇加盐的.萃取方式,以含盐乙二醇溶剂为萃取剂,考察了盐的类型、回流比、溶剂比等因素对异丙醇一水混合液精馏分离效果的影响,小型工艺试验装置的操作结果表明,在回流比0.5、溶剂比0.625、萃取剂进料速率20ml/min的条件下,异丙醇质量分数可达98.87%,能够满足工厂生产的要求。
萃取精馏塔工艺计算的结果表明,加盐dmf可以有效地降低能耗,与纯dmf相比再沸器和冷凝器负荷分别节省17.5%和8.0%。有资料表明对乙腈萃取精馏分离碳四的助溶剂进行计算机辅助分子设计,将分子设计分为有机物和盐类分别进行,比较设计结果后认为,乙腈加盐能够有效地提高碳四组分间的相对挥发度,并且nascn和kscn是最优的助溶剂。萃取精馏的计算机辅助分子设计能够减少实验的工作量。
针对工业上传统蒸馏法分离环己酮一水物系能耗过大的问题,邱学青等研究了含盐类的复合萃取剂对该物系的萃取分离效果,其结果表明mgc1能明显改变环己酮与水之间的互溶度,大幅度提高复合萃取剂对组分的萃取分配系数和选择性系数,为工业上环己酮的生产提纯提供了一种新的分离方法;刘思周以醋酸异丙酯为萃取剂,用加盐萃取一恒沸精馏的方法分离醋酸一水溶液。考察了不同种类的盐及其浓度对萃取剂中醋酸含量的影响,盐可以大大提高萃取剂的分配系数和选择性系数;杨金苗等分别用不同浓度的乙二醇、盐及含盐乙二醇溶液考察了对醋酸甲酯一水物系的影响,并进行汽液平衡测定。其研究结果表明,加盐萃取精馏比单纯的普通精馏、加盐精馏、萃取精馏的分离效果好。对于醋酸甲酯一水物系,通过汽液平衡实验可看出,加入盐明显提高了共沸物中醋酸甲酯的含量,可达到较好的分离效果;针对醋酸甲酯一甲醇一水物系分离难、生产能耗高的现状,杨东杰等采用mgcl2、ch3cook和水组成的复合盐萃取剂对该物系进行分离。气相色谱分析结果表明,盐可降低醋酸甲酯在水中的溶解度。
萃取精馏溶剂的筛选一般要经过计算筛选和实验筛选。随着计算机技术的发展,将分子设计应用于萃取精馏计算筛选可以大大减少实验工作量。溶剂加盐是萃取精馏溶剂优化的一个重要策略。如果遇到萃取精馏分离过程,可以尝试采用加盐的方式对溶剂进行改进。在萃取精馏溶剂选择和优化过程中,由于基础溶剂和助溶剂受到诸多方面制约,使可选择范围缩小,这对选择和发现新的溶剂极为不利。在普通精馏不能完成的分离场合,应该优先考虑萃取精馏,然后是其他的特殊精馏方式和分离方法。其主要的发展方向为:一方面,可以将其与传统分离过程相结合,建立新的耦合过程强化分离效果;另一方面,多样化的萃取剂与盐的组合吸引了众多研究者在此领域进行探索,并取得了一定的进展。随着科学技术的进步,加盐萃取精馏技术有望发挥更大的作用。

一键复制