当前位置:网站首页 >> 文档 >> 最新积分不等式的证明方法论文 不定积分公式的证明(五篇)
范文文档
最新积分不等式的证明方法论文 不定积分公式的证明(五篇)
  • 时间:2025-04-01 14:58:35
  • 小编:B站经济金融一点通
  • 文件格式 DOC
下载文章
一键复制
猜你喜欢 网友关注 本周热点 精品推荐
心中有不少心得感悟时,不如来好好地做个总结,写一篇心得感悟,如此可以一直更新迭代自己的想法。我们想要好好写一篇心得感悟,可是却无从下手吗?以下是我帮大家整理的最
计划是指为了达到某种目标或完成某项任务而做出的详细安排和安排程序的活动,它可以使我们有条不紊地进行工作和生活。计划给我们提供了一定的目标方向和时间节点,让我们能
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?下面我帮大家找寻并整理了一些优秀的计划
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。相信许多人会觉得计划很难写?以下是小编为大家收集的计划范文,仅供参考,大家一起来看看吧
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。我们该怎么拟定计划呢?下面是小编整理的个人今后的计划范文,欢迎阅读分享,希望对大家有
演讲稿的撰写过程需要有明确的目标和主题,并进行必要的资料收集和整理。在写演讲稿之前,可以进行充分的资料和内容收集,做好准备工作。以下是小编为大家收集的一些优秀的
演讲稿的语气可以根据主题和情感需要进行调整,既可以庄重严肃,也可以活泼轻松。演讲稿的结构可以采用问题—解决、因果推理、对比论证等方式,以增强逻辑性和说服力。以下
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。写方案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编为大家
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
一个好的计划需要明确目标、确定步骤和预估成本。要写一份较为完美的计划,首先需要明确目标和任务。以下是小编为大家收集的关于制定计划的范文,希望能够给大家以启示和参
拟定一个明确的计划,有助于我们有条不紊地进行各项活动。制定计划时,我们要考虑到可能遇到的挑战和困难,制定相应的备选方案。最后,希望大家能够善用这些计划范文,根据
科技的快速发展给人们的生活带来了巨大的变化,我们需要思考科技对我们生活的影响和作用。总结要在客观的事实基础上进行,不要带有过多的主观色彩。以下是小编为大家整理的
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?那
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范文,方便大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面我给大家整理
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大
方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。那么方案应该怎么制定才合适呢?下面是小编为大家收集的方案策划范文,供大家参考借鉴
总结是在一段时间内对某一事物的全面总结和概括。写总结时可以参考一些经典的总结范文,借鉴其优点和特点。面对总结这一任务,我们可以从不同角度和维度去思考和展开,以下
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。什么样的总结才是有效的呢?以下我给大家整理
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家带来的优秀教案范
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?那么下面我就给大家讲一讲教案怎么写才比较好,我
总结不仅可以找出自己的不足之处,还能够总结出成功和经验的秘诀。总结应该具备简洁明了、条理清晰的特点,方便读者阅读和理解。通过阅读这些总结范文,我们可以对总结的写
总结不仅可以帮助我们反思自己的行为和决策,还可以帮助我们总结经验,为将来的工作和学习做好准备。总结要有层次感,结构清晰,避免内容杂乱无章。欢迎大家阅读以下总结范
无论是学习还是工作,总结都是我们不可或缺的一部分,它可以帮助我们不断提高。总结中怎样抓住关键点,使读者一目了然?请大家积极参考和借鉴这些范文,并自觉遵守学术道德
计划可以帮助我们保持目标的清晰性和方向感。计划的制定需要考虑到自身的优势和短板,制定相应的发展计划和学习计划。希望这些范文可以给大家提供一些启发和借鉴,提高计划
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。优秀的计划都具备一些什么特点呢?又该怎么写呢?那么下面我就给大家
总结有助于我们把握事物的本质,提高问题解决能力,做到事半功倍。总结应该突出重点,简练明了,不必罗列所有的细节。如果想了解更多优秀的总结写作,可以参考以下范文进行
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
报告材料主要是向上级汇报工作,其表达方式以叙述、说明为主,在语言运用上要突出陈述性,把事情交代清楚,充分显示内容的真实和材料的客观。大家想知道怎么样才能写一篇比
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那么我们该如何写一篇较为完美的总
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我
演讲稿是在特定场合下为了达到特定目的而准备的一种文字材料。演讲稿的内容要具有说服力,要有充分的论据和实例来支持观点。以下是一些优秀演讲稿范文,供大家参考学习;精
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整
演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。我们如何才能写得一篇优质的演讲稿呢?下面是小编为大家整理的演讲稿,欢迎大家分享阅读。九年级
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。通过制定计划,我们可以更加有条理地进行工作和生活,提
在信息爆炸的时代,总结可以帮助我们更好地筛选和整理所学知识。写作要注意文章结构的合理性和层次感,以便更好地组织观点。我们整理了一些总结的技巧和方法,希望能对大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么你知道心得体会如何写吗?下面是小编帮大家整理的优秀心得
计划可以帮助我们更好地规划和安排个人和团队的目标,实现更好的个人和集体发展。计划需要经常进行调整和修正,以适应变化的情况。以下是小编为大家收集的计划范例,供大家
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
计划是我们实现成功的重要步骤之一,它为我们的行动提供了指导和方向。制定计划时,可以借鉴他人的经验和成功案例,学习他们的方法和技巧。以下是小编为大家汇总的一些优秀
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
总结是一个循序渐进和不断完善的过程,能够不断提高自己的综合素养。总结需要客观真实,准确反映所总结的事实和情况。接下来,我们将分享一些优秀的总结范文,希望能给大家
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文
为了确保事情或工作得以顺利进行,通常需要预先制定一份完整的方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。方案对于我们的帮助
演讲稿是一种通过口头陈述的方式来表达观点、传达信息或演示技能的书面材料。它通常用于公开场合,如会议、演讲比赛等,可以提高演讲者的口头表达能力和逻辑思维能力。我们
演讲稿的撰写需要考虑听众的需求和背景,以确保能够产生良好的沟通效果。使用恰当的修辞手法和修辞格能够增加演讲稿的说服力和吸引力。希望以上的范文和技巧对大家写作演讲
演讲稿是一种通过口头表达方式来陈述和阐述特定主题或观点的文本,它可以用于各类公开场合,如会议、演讲比赛等,有助于传达信息和观点,提升说服力。演讲稿应该具备情感共
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。我们想要好好写一篇演讲稿,可是却无从下手吗?接下来我就给大家介绍一下如何才能写
撰写一份令人印象深刻的演讲稿需要一定的技巧和准备工作。写完演讲稿后,还需要多次演练和调整,以达到最佳的演讲效果。以下是小编为大家收集的几篇优秀演讲稿范文,供大家
总结是对学习过程和成果的总结和梳理,可以帮助我们提高学习效率和成绩。制定一个明确的总结目标,明确要表达的主题和重点。总结范文以简洁明了的语言展现了相关内容,让人
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧有关恋爱的动漫篇一从
通过总结,我们可以发现自己的优点和不足,进而做出相应的改进和调整。如何写出有趣、生动的文章?让我们一起来探讨吧。精选几篇优秀的总结范文,让我们一起探索写作的奥秘
环境问题是人类社会面临的重大挑战,我们需要积极采取行动保护环境。写总结时要简明扼要,力求言之有理,语言通顺且表达精确。以范文为参考,可以更好地了解如何在总结中准
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?以下是小编收集整理的教案
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
演讲稿具有宣传,鼓动,教育和欣赏等作用,它可以把演讲者的观点,主张与思想感情传达给听众以及读者,使他们信服并在思想感情上产生共鸣。那么演讲稿该怎么写?想必这让大
合理的计划可以帮助我们提高效率,避免在工作和学习中的无效努力。如果要写一份较为完美的计划,我们首先需要明确目标和任务。看看下面的计划示范,或许能够激发你的灵感和
一个好的计划可以帮助我们明确目标、制定步骤和分配资源。制定计划时,要根据不同的目标设定相应的具体行动步骤。小编整理了一些关于计划制定的常识和基本原则,供大家参考
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?接下来小编就给大家介绍一下优秀的范文该怎么写,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家
一个好的计划需要具备具体、可行和切实可行的特点。在制定计划时,我们可以采用SMART原则,即具体、可度量、可达到、相关、有时间限制。执行计划时,我们需要与他人进
通过计划,我们可以合理安排生活,平衡工作与娱乐。设定合理的时间表,为每个小目标设定截止日期和完成时间。以下是小编为大家准备的一些计划范文,供大家参考。希望这些范
计划的制定过程需要考虑各种因素,包括任务的紧急程度、资源的可获得性以及个人的能力等。一个好的计划需要考虑时间的分配和合理安排,避免过度压缩和拖延。在制定计划时,
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
为了确保事情或工作得以顺利进行,通常需要预先制定一份完整的方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。写方案的时候需要注
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?这里我整理
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参
总结能够提高我们的工作和学习效率,让我们更好地利用时间和资源。在写总结之前,可以参考其他相关总结的范文,借鉴其优秀的内容和表达方式。以下是一些写作明星总结范文,
计划是指为了实现特定目标而制定的一系列步骤或安排。在制定计划的过程中,可以借鉴以往的经验和教训,学习他人的成功经验和失败教训。希望以下这些关于计划的案例和故事可
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?下面是我给大家整理的计划
总结是一个对自己的检阅和思考的过程,有助于我们更好地认识自己。如何解决人际冲突,维护人际关系的和谐?总结是一种对问题和挑战的思考和总结,需要我们用心去体会和理解
在日常生活中,我们经常需要面对各种各样的挑战和问题。总结需要有系统的思维,可以从整体到细节进行梳理。下面给出了一些详细的写作指导平安创建汇报材料篇一我们西南社区
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?以

最新积分不等式的证明方法论文 不定积分公式的证明(五篇)

格式:DOC 上传日期:2025-04-01 14:58:35
最新积分不等式的证明方法论文 不定积分公式的证明(五篇)
    小编:B站经济金融一点通

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。

积分不等式的证明方法论文 不定积分公式的证明篇一

摘要

在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.

关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性

abstract

when we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.in this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality, integral mean value theorem, integral property, taylor formula,double integral and differential mean value y,the full paper is summarized.

key words: integral inequality, definite integral,mean value theorem,cauchy-schwarz inequality, monotonicty

1.引

不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.

实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到newton-leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.

本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.

在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.

2.几个重要的积分不等式

在高等数学的学习中我们遇到过许多重要的积分不等式,如cauchy-schwarz不等式,young不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.

2.1 cauchy-schwarz不等式

无论是在代数还是在几何中cauchy-schwarz不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间,f,p中的以及n维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.

定理2.1[1] 设f(x), g(x)在[a,b]上连续,则有

[f(x)g(x)dx]2{[f(x)]2dx} {[g(x)]2dx}.

aaabbb证明:要证明原不等式成立,我们只需要证

设ftt2abaf2xdxat2bbgxdxfxgxdx0成立. a 222tfxdxgxdxfxgxdx,则只要证fbfa成立,aa由ft在[a,b]上连续,在a,b内可导,得

ftf2tg2xdxg2tf2xdx2ftgtfxgxdxaaa2222ftgx2ftgtfxgxgtfxdx atttt

ftgxgtfxdx0.

(2.1)a由(2.1)式可知ft在[a,b]上递增,由ba,知fbfa,故原不等式成立.

证毕

实际上关于cauchy-schwarz不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原cauchy-schwarz不等式能够改写成以下行列式的形式 t2 4 南通大学毕业论文

fxfxdxgxfxdx0,aabbbafxgxdxgxgxdxab由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出

cauchyschwarz不等式的推广形式.

定理2.2[2] 设fx,gx,hx在a,b上可积,则

hxfxdxfxgxdxgxgxdxhxgxdx0. fxhxdxgxhxdxhxhxdxaaabbbaaabbbaaabfxfxdxbgxfxdxb 证明:对任意的实数t1,t2,t3,有

bat1fxt2gxt3hxdx

bbbaaa2t12f2xdxt22g2xdxt32h2xdxbbaa

ba2t1t2fxgxdx2t1t3fxhxdx2t2t3gxhxdx0. 注意到关于t1,t2,t3的二次型实际上为半正定二次型, 从而其系数矩阵行列式为

babbaf2xdxbagxfxdxabhxb2fxdx

xfxhfaxgxdxdxbab2agxdxbaxhag0x.d x证毕 xdxgxhxdxh以上的推广是将cauchy-schwarz不等式的行列式由二阶推广到了三阶的形式,事实上cauchy-schwarz不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出cauchy-schwarz不等式及其推广形式在积分不等式证明中的应用.

除了cauchy-schwarz不等式之外还有很多重要的积分不等式,例如young不等式,相较于cauchy-schwarz不等式我们对young不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对young不等式进行一些研究.

2.2 young不等式

young不等式,以及和它相关的minkowski不等式,hölder不等式,这些都是在现代分

析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的young不等式的证明.

定理2.3[3] 设f(x)在[0,c](c0)上连续且严格递增,若f(0)0,a[0,c]且b[0,f(c)],则0f(x)dx0f1(x)dxab,其中f1是f的反函数,当且仅当bf(a)时等号成立.

证明:引辅助函数g(a)abf(x)dx,(2.2)

0aab把b0看作参变量,由于g(a)bf(a),且f严格递增,于是

当 0af1(b)时,g(a)0;当 af1(b)时,g(a)0;当 af1(b)时,g(a)0. 因此 当af1(b)时,g(a)取到g的最大值,即

gamaxgxgf1b

(2.3)

由分部积分得

f1(b)f1(b)0g(f(b))bf(b)作代换yf(x),上面积分变为

11f(x)dx0xdf(x),g(f1(b))f1(y)dy,(2.4)

0b将(2.2)式和(2.4)式代入(2.3)式得

abf(x)dxf(y)dyf1(x)dx,000ab1b即f(x)dxf1(x)dxab. 证毕

00ab 6 南通大学毕业论文

3.定积分不等式常见的证明方法

关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.

3.1 利用函数的凹凸性

在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.

定理3.1 若t定义在间隔m,m内,且t0,则t必为下凸函数.

定理3.2 设fx在[a,b]上为可积分函数,而mf(x)m.又设t在间隔mtm内为连续的下凸函数,则有不等式

1b1bfxdxfxdx. aabababb例3.1[4] 设fx在a,b上连续,且fx0,求证:fxdxaa12dxba. fx证明: 取u112, 因为u20,u30,u0 uuu即在u0时,yu为凸函数,故有

1b1bfxdxfxdx,aabababa即fxdxabba1dxbbfx12dxba.

证毕,故fxdxaafxba在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.

3.2 辅助函数法

辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明

南通大学毕业论文 的结论.在第二部分中我们用辅助函数法对cauchy-schwarz不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.

例3.2.1[5] 设函数fx在区间0,1上连续且单调递减,证明:对a(0,1)时, 有: fxdxaf(x)dx.

00a11x证明:令fxf(t)dt 0x1,由fx连续,得fx可导

x0则fxfxxftdt0xx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf, 从而ft0,fx在(0,1]上单调减少,则对任意a(0,1),有f(a)f(1). 即

a111af(x)dxafxdx. 证毕 a,两边同乘即得f(x)dxfxdx,0000a本题根据积分不等式两边上下限的特点,在区间(0,1)上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.例3.2.2 设函数fx在区间0,1上连续且单调递减非负,证明:对a,b(0,1),且0ab1时,有: fxdx0aabf(x)dx. ab证明:令fxfx1xf(t)dt,0x1,由fx连续,得fx可导, 则 x0x0fxxftdtx2 fxxfxfxf ,(0x). 2xx因为f(x)在[0,1]上单调减少,而0x,有fxf,从而ft0,fx在(0,1]上单调减少,则对任意0ab1,有f(a)f(b),即

1a1b ftdtftdt.

(3.1)

a0b0由f非负,可得fxdxfxdx.

(3.2)0abb结合(3.1)式和(3.2)式可得 即a1a1bfxdxfxdx. a0ba0abfxdxfxdx.

证毕

babbaa例3.2.3[6] 函数f(x)在[a,b]上连续,且fx0 试证:f(x)dx 8

1dx(ba)2. f(x)南通大学毕业论文

在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.

证明: 构造辅助函数xftdtaxxadt2xa, 则 ft xfxxaxdt1ftdt2xaftafx

xaxftxfxdtdt2dt

afxaftxfxft2dt0, aftfx

所以x是单调递增的,即ba0,故fxdxabba12dxba. 证毕 fxabbxfxdxfxdx.

2a例3.2.4 设fx在a,b上连续且单调增加,证明:[7]

ba证明: 原不等式即为xfxdx则fttft1t2a1taftf , a,t.

2abbfxdx0,构造辅助函数 aa2tattftxfxdxfxdx ,ta,b,a2atat1fxdxfttaftfxdxa 2 2b因为at,fx单调增加,所以ft0.故ft在a,b上单调递增,且fa0, 所以对x(a,b],有fxfa0.当xb时,fb0.即

baxfxdxabbfxdx0,故原不等式成立, 证毕 a2通过以上几道题目的观察我们可以发现:

1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.

2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.

3.3 利用重要积分不等式

在第2部分中我们给出了cauchy-schwarz不等式以及它的推广形式的证明过程,实际上cauchy-schwarz不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.

例3.3.1[8] 函数fx在0,1上一阶可导,f1f00, 试证明:10112fxdxfxdx.

402证明:由fxftdtf0和fxftdtf10x1x

可得

f2xx0ftdt2xx1112dtf2tdtxf2xdx,(x0,), 0002111112dtf2tdt(1x)f2xdx,(x,1). xx02 f2xxftdt12因此 f2xdx 120112fxdx,(3.3)0811

2(3.4)fxdx.8010

112f2xdx将(3.3)式和(3.4)式相加即可以得到f2xdx[2]

112fxdx.

证毕 40b例3.3.2 设fx,gx在a,b上可积且满足:0mfxm,gxdx0,a则以下两个积分不等式

bafxgxdx2b2f2xdxg2xdxm2bag2xdx及

aaabbb bafxgxdx2mmmmbaaf2xdxg2xdx成立.

ab证明:取hx1,由gxdx0及定理2.2知

babaf2xdxfxgxdxfxdxbagxfxdxfxdx0 gxdxaab2abb0bab bafab2xdxagxdxafxdxagxdxbaafxgxdx22bb2b0.

2因此

 bafxgxdx2baf2xdxab1gxdxba2bafxdxgxdx.

(3.5)

2b2a 10 南通大学毕业论文

由mfx可知 bafxdx2b22m2ba,bb2因而bafxgxdxafxdxagxdxmbaag2xdx.

22mmmm由于0mfxm,因此fx.

22化简得f2xmmmmfx, 两边同时积分得 f2xdxmmbammfxdx, aabb22由算数-几何平均值不等式可知

于是2baf2xdxmmbaf2xdxmmba,abbaabf2xdxbafxdx2mm4mm2.

1则ba bafxdxgxdxba2b2abfxdxba2af2xdxbaf2xdxag2xdx

b2mma4mmb

(3.6)f2xdxg2xdx.

ab由式(3.5)和式(3.6)可知

bafxgxdx2mmmm2baf2xdxg2xdx.

证毕

ab以上两道题分别利用了cauchy-schwarz不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用cauchy-schwarz不等式颇为有用,但要注意选取适当的fx与gx,有时还需对积分进行适当的变形.

3.4 利用积分中值定理

积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.

定理3.3(积分第一中值定理)若f(x)在[a,b]上可积且mf(x)m,则存在 11 南通大学毕业论文

u[m,m]使f(x)dxu(ba)成立.特别地,当f(x)在[a,b]上连续,则存在c[a,b],使abbaf(x)dxf(c)(ba)成立.

定理3.4(积分第一中值定理的推广)若函数fx,gx在区间a,b上可积,fx连续,gx在a,b上不变号,则在积分区间a,b上至少存在一个点,使得下式成立

fxgxdxfgxdx.

aabb定理3.5(积分第二中值定理的推广)若函数fx,gx在区间a,b上可积,且fx为单调函数,则在积分区间a,b上至少存在一个点,使得下式成立 fxgxdxfagxdxfbgxdx.

aabb例3.4.1 设函数fx在区间0,1上连续单调递减,证明:对a,b(0,1),且0ab1时,有fxdx0aabf(x)dx,其中fx0. ab对于这道题目我们在3.2.2中给出了其利用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.

证明:由积分中值定理知

0afxdxf1a, 10,a; fxdxf2ba,2a,b;

ab因为12,且fx递减,所以有f1f2, 1a1b1bfxdxfxdxfxdx, 0aaababaab故 fxdxfxdx. 证毕

0ba即

例3.4.2 设fx在a,b上连续且单调增加,证明:baabbxfxdxfxdx.

2a同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.

证法一

bababab2证明: xxfxdxxfxdxabfxdx. aa2222bab 12 南通大学毕业论文

abab由定理3.4可知,分别存在1a,,b, 222使得 ab2aabab2xfxdxfx1adx, 22abbabab abxfxdxfx2abdx, 2222 babab因此xfxdxa28b2ff,由于fx在0,1单调增加的,且

210121,所以有 f2f10.

ab从而xfxdx0,故原不等式成立, 证毕 a2b证法二

证明:由定理3.5可知:存在a,b,bababab使得 xfaxdxfbxfxdxdx aa222b fafbab.

由fx单调增加及a,b知fafb0,a0,b0.

bab可得xfxdx0,故原不等式成立, 证毕 a2通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.

3.5 利用积分的性质

关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.

例3.5.1[9] 设fx在0,1上导数连续,试证:x0,1,13 南通大学毕业论文

有 fxfxfxdx. 0证明:由条件知fx在0,1上连续,则必有最小值, 1即存在x00,1,fx0fx, 由ftdtfxfx0fxfx0ftdt, x0x0xx fxfx0ftdtfx0x0xxx0ftdtfx0ftdt

0101 fx0dt0110ftdtftdt01ftftftdtdt 0

1fxfxdx.故原不等式成立, 证毕

013.6 利用泰勒公式

在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.

定理3.6(带有拉格朗日型余项的taylor公式)设函数f(x)在点x0处的某邻域内具有n1阶连续导数,则对该邻域内异于x0的任意点x,在x0与x之间至少存在一点,使得:

f(x0)fn(x0)2f(x)f(x0)f(x0)(xx0)(xx0)(xx0)nrn(x)

(1)

2!n!f(n1)()其中rn(x)(xx0)n1(在x与x0之间)称为拉格朗日型余项,(1)式称为泰勒公(n1)!式.

例3.6.1[10] 设fx在a,b上有二阶连续导数,fafb0,mmaxfx,xa,b试证明:fxdxabba123m.

证明:对xa,b,由泰勒公式得

f

fafxfbfxf1xax21xbx2faxa,x, , 2fbxx,b, , 2ab122, 两式相加得 fxfxxfaxfbx24 14 南通大学毕业论文

两边积分得 fxdxabbaab1b22dx, fxxdxfaxfbxa24bbbabab其中 fxxdxxdfxfxdx, aaa22于是有 fxdx故 ba1b22dx, faxfbxaa8mb22dxmba3. 证毕 fxdxaxbx8a12b例3.6.2[6] 设fx在a,b上有二阶导数,且fx0,ab求证 fxdxbaf. a2b证明:将fx在x0ab处作泰勒展开得到 22ab1abababab, fxffxfxx,.

222222

ababab因为fx0,所以可以得到 fxffx,222babababb对不等式两边同时积分得到 fxdxfbafxadx. a222bab因为xdx0, 所以有afxdxbaa2babf. 证毕

2通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点xo,并写出fx在这个点xo处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.

3.7 利用重积分

在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.

3.7.1 直接增元法

命题一[11]:若在区间[a,b]上f(x)g(x),则f(x)dxg(x)dx.

aa

bb例3.7.1[11] 设f(x),g(x)在[a,b]上连续,且满足:

xaf(t)dtg(t)dt,x[a,b],af(t)dtag(t)dt,证明:axf(x)dxaxg(x)dx.

axbbbb证明:由题得f(t)dtg(t)dt, aaxx从而可以得到dxf(t)dtdxg(t)dt,即dx[f(t)g(t)]dt0.

aaaaaabxbxbx左式dx[f(t)g(t)]dt [f(t)g(t)]dxdt(其中d{(x,t)|axb,atx})aadbx dt[f(t)g(t)]dx (bt)[f(t)g(t)]dt

atabbb b[f(t)dtg(t)dt][tf(t)dttg(t)dt][tf(t)dttg(t)dt]0.

aaaaaabbbbaaaabbbbbb则 tf(t)dttg(t)dt0 , 即xf(x)dxxg(x)dx. 证毕

在本题中我们将一元积分不等式f(x)dxg(x)dx的两边同时增加一个积分变量

aaxxbadx,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.3.7.2 转换法

在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分

命题二[11] 若f(x)在[a,b]上可积,g(y)在[c,d]上可积,则二元函数f(x)g(y)在平面区域d{(x,y)|axb,cyd}上可积,且

df(x)g(y)dxdyf(x)dxg(y)dyf(x)dxg(x)dx.

acacbdbd其中d{(x,y)|axb,cyd}

例3.7.2[11] 设p(x),f(x),g(x)是[a,b]上的连续函数,在[a,b]上,p(x)0,f(x),g(x)为单调递增函数,试证:

babap(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx.

aaabbbaaabbb

证明:由p(x)f(x)dxp(x)g(x)dxp(x)dxp(x)f(x)g(x)dx可知:

babap(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx0,aaabbaabbb令ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx, ab下证i0;

ip(x)dxp(x)f(x)g(x)dxp(x)f(x)dxp(x)g(x)dx

aaaabbbb

同理

p(x)dxp(y)f(y)g(y)dyp(x)f(x)dxp(y)g(y)dy

aaaabbbbbabbabp(x)p(y)f(y)g(y)dxdybabap(x)f(x)p(y)gydxdy

aap(x)p(y)g(y)[f(y)f(x)]dxdy.

(3.7)bbbip(x)dxaabab(p)x(f)x(g)xdxab(p)x(f)xdx()pxgxdx

a

p(y)dybbap()xf()xg()xdxab(p)y(f)ydy(p)xgxdxab p(y)p(x)g(x)[f(x)f(y)]dxdy.

(3.8)aa

(3.7)(3.8)得

2ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy, 因为f(x),g(x)同为单调增函数,所以[g(y)g(x)][f(y)f(x)]0 又因为p(x)0,p(y)0,故 2ibabap(x)p(y)[g(y)g(x)][f(y)f(x)]dxdy0,即i0.

证毕

2.将常数转换为重积分的形式

在例3.7.2中我们介绍了将累次积分转换为重积分,在下面的例3.7.3中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数f(x,y)k,则可得到kdk(ba)2,其中d{(x,y)|axb,ayb}.

d例3.7.3函数f(x)在[a,b]上连续,且fx0试证:f(x)dx

abba1dx(ba)2. f(x)本题与前面的例3.1以及例3.2.3是同一道题目,在这里我们将利用重积分证明此题. 证明:原题即为 f(x)dxabba1dyd, f(y)d 17 南通大学毕业论文

移项可得(df(x)1)d0, f(y)2(df(x)f(x)f(y)1)d(1)d(1)d0, f(y)f(y)f(x)ddf(x)f(y)f(x)f(y)2)d0,因为f(x)0,f(y)0,所以20. f(y)f(x)f(y)f(x)所以即为证(d故 (dbbf(x)f(y)12)d0 恒成立,即f(x)dxdx(ba)2成立, 证毕

aaf(x)f(y)f(x)通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.

3.8 利用微分中值定理

微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.

例3.8.1[12] 设fa0,fx在区间a,b上的导数连续,证明:

2baa1bfxdx1maxfx. x2a,b证明:应用lagrange中值定理,a,x,其中axb,使得

fxfafxa, 因为fa0, 所以fxmxa, mmaxfx,xa,b从a到b积分得

a bfxdxmbam2bxadxmxadxx2

aa2bm1122bamaxfxba.即222babafxdx1maxfx.证毕 x2a,b 18 南通大学毕业论文

例3.8.2[13] 设函数fx在0,1上可微,且当x0,1时,0fx1,f00试证:

fxdxf121003xdx.

证明:令fxx0ftdt,gxf3tdt,02xfx,gx在0,1上满足柯西中值定理,则

fxdx10210f03xdxf1f0fg1g0g02fftdt0f32ftdt0f2 01

2ftdtftdtf2f0202f11 , 01.

2fff所以 10fxdx2f2xdx.

证毕

01通过以上两道题目可以发现:

1.在应用lagrange中值定理时先要找出符合条件的函数fx,并确定fx在使用该定理的区间a,b,对fx在区间a,b上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用lagrange中值定理.

2.在研究两个函数的变量关系时可以应用cauchy中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足cauchy中值定理的两个函数fx,gx,并确定它们应用柯西中值定理的区间a,b,然后在对fx,gx在区间a,b上运用cauchy中值定理.

无论是cauchy中值定理还是lagrange中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.

4.总

我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.

参考文献

[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[j].荆州师范学院学报(自然科学 版),2000,23(5):106 [2] 张盈.cauchy-schwarz不等式的证明、推广及应用[j].高师理科学刊,2014,34(3):34-37 [3] 黄群宾.积分不等式的证明[j].川北教育学院学报,1996,6(4):22-27 [4] 李志飞.积分不等式的证明[j].高等数学研究,2014,17(6):50-51 [5]郝涌,王娜,王霞,郭淑利.数学分析选讲[m].北京:国防工业出版社,2014 [6]张瑞,蒋珍.定积分不等式证明方法的研究[j].河南教育学院学报(自然科学版),2011,20(2):18 [7]林忠.一个积分不等式的几种证明方法[j].成都教育学院学报,2006,20(12):66 [8]刘法贵.证明积分不等式的几种方法[j].高等数学研究,2008,11(1):122 [9] 苏德矿,李铮,铁军.数学强化复习全书[m].北京:中国证法大学出版社,2015 [10] 李小平,赵旭波.定积分不等式几种典型证法[j].高等数学研究,2009,12(6):13-17 [11] 黄云美.重积分在积分不等式证明中的应用[j].杨凌职业技术学院学报,2014,13(3):27-33 [12] 葛亚平.积分不等式证明的再认识[j].河南教育学院学报(自然科学版),2015,24(3):18-20 [13] 王丽颖,张芳,吴树良.积分不等式的证法[j].白城师范学院学报,2007,21(3): 19-22

积分不等式的证明方法论文 不定积分公式的证明篇二

利用定积分证明数列和型不等式

我们把形如(为常数或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数型,求证例1(2007年全国高中数学联赛江苏赛区第二试第二题已知正整数

.分析 这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数知,在区间 并作图象如图1所示.因函数在上是凹函数,由函数图象可上的个矩形的面积之和小于曲边梯形的面积,图1

即,因为,所以.所以.例2 求证

.证明 构造函数而函数在和小于曲边梯形的面积,又,上的个矩形的面积之

上是凹函数,由图象知,在区间

2即,所以

.例

3证明。

证明

构造函数区间 上,因,又其函数是凹函数,由图3可知,在个矩形的面积之和小于曲边梯形的面积,图3 即

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为项之和,中间的通项不等式的数列的前项之和,右边通项为项之和.故只要证当的数列的前时这三个数列的可当作是某数列的前

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为(ⅰ)用表示出(ⅱ)若; 在内恒成立,求的取值范围;.的图象在点(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明

(ⅲ)不等式项之和,我们也可把右边当作是通项为的数列的前项之和,此式适合即,左边是通项为,则当,故只要证当的数列的前时,时,也就是要证

由此构造函数积,即,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

.图5

而立.,所以,故原不等式成

积分不等式的证明方法论文 不定积分公式的证明篇三

利用定积分证明数列和型不等式

我们把形如(为常数)

或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)

已知正整数,求证

.分析这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明构造函数

数图象可知,在区间并作图象如图1所示.因函数在上是凹函数,由函上的个矩形的面积之和小于曲边梯形的面积,图

1即,因为,所以.所以

.例2求证

.证明构造函数而函数

在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和

小于曲边梯形的面积,图

2即,所以

.例3证明。

证明构造函数知,在区间

上,因,又其函数是凹函数,由图3可

个矩形的面积之和小于曲边梯形的面积,图

3即

.所以

.二、型

例4若,求证:.证明不等式链的左边是通项为前

项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前

列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间

上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两

个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图

4例5(2010年高考湖北卷理科第21题)已知函数

处的切线方程为的图象在点

.(ⅰ)用表示出(ⅱ)若;

在内恒成立,求的取值范围;

(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式

列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的数时,此式适合,故只要证当

时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面

积,即

.图5

故原不等式成立.,所以,

积分不等式的证明方法论文 不定积分公式的证明篇四

利用定积分证明数列和型不等式

我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些不等式若利用定积分的几何意证明,则可达到以简驭繁、以形助数的解题效果.下面举例说明供参考.一、(为常数)型

例1(2007年全国高中数学联赛江苏赛区第二试第二题)已知正整数,求证

.分析

这是一边为常数另一边与自然数有关的不等式,标准答案是用数学归纳法证明比这个不等式更强的不等式,这个不等式是怎么来的令人费解.若由所证式子联想到在用定积分求曲边梯形面积的过程中“分割求和”这一步,则可考虑用定积分的几何意义求解.证明 构造函数数图象可知,在区间

并作图象如图1所示.因函数在上是凹函数,由函

上的个矩形的面积之和小于曲边梯形的面积,图1 即,因为,所以.所以

.例2 求证

.证明 构造函数

而函数在,又,上是凹函数,由图象知,在区间上的个矩形的面积之和小于曲边梯形的面积,图

2即,所以.例3 证明。

证明 构造函数可知,在区间 上,因,又其函数是凹函数,由图

3个矩形的面积之和小于曲边梯形的面积,图3

.所以

.二、型

例4 若,求证:.证明 不等式链的左边是通项为前项之和,中间的的数列的前项之和,右边通项为项之和.故只要证当的数列的时这三个数

可当作是某数列的前列的通项不等式

成立即可.构造函数,因为,作的图象,由图4知,在区间上曲边梯形的面积大小在以区间长度1为一边长,以左右端点对应的函数值为另一边长的两个矩形面积之间,即,而,故不等式

成立,从而所证不等式成立.图4

例5(2010年高考湖北卷理科第21题)已知函数处的切线方程为

(ⅰ)用表示出 ;

.的图象在点(ⅱ)若 在内恒成立,求的取值范围;

(ⅲ)证明:

.本题第三问不等式的证明是本大题也是本卷的压轴戏,具有综合性强、难度大、思维含金量高、区分度大等特点.这个不等式的证明既可用第二问的结论证明也可用定积分来证明.证明(ⅲ)不等式数列的前项之和,我们也可把右边当作是通项为

左边是通项为的数列的前项之和,则当的时,此式适合,故只要证当 时,即,也就是要证

.由此构造函数,并作其图象如图5所示.由图知,直角梯形的面积大于曲边梯形的面积,即

.图

5而,所以,故原不等式成立.点评 本解法另辟蹊径,挖掘新的待证不等式左右两边的几何意义,通过构造函数利用定积分的几何意义来解决问题,解法虽然综合性强,但由于数形结合解法直观便于操作.积分法是在新课标下证明不等式的一个新方法新亮点,很值得品味.由例4例5可知,要解决这类复杂问题的关键是要善于联想善于分析问题和转化问题,这样才能化繁为简、化难为易,

积分不等式的证明方法论文 不定积分公式的证明篇五

探讨定积分不等式的证明方法

摘要:文章针对被积函数的特性,给出了几种关于定积分不等式的有效证明方法。

关键词:定积分

不等式

证法

不等式的证明在高等数学的学习中很常见,但关于定积分不等式的证明却一直是一个难点。要证明定积分不等式,首先要看被积函数,其性质确定证明方法。本文根据被积函数的连续性、单调性、可导性等分别给出几种证法。

1.运用定积分中值定理证明

定积分中值定理是将定积分转化为连续函数在该区间上某点的函数值与该区间长度的乘积,即将定积分转化为函数来证明不等式。

例1:设f(x)在[0,1]上连续且单调不增,证明a∈[0,1]有

a0f(x)dx≥af(x)dx.

01证明:由原不等式变形得即是要证:(1a)a0f(x)dx≥a(f(x)dxf(x)dx),0010a1a0f(x)dx≥af(x)dx, 对左式,f(x)在[0,1]上连续,故a由定积分中值定理知:

10,a使

(1a)f(x)dxa(1a)f(1), 0同理对右式:2a,1使a0f(x)dxa(1a)f(2),1显然,1<2又f(x)在[0,1]上单调不增,∴f(1)≥f(2)故原不等式a0f(x)dx≥af(x)dx成立.01定积分中值定理的运用直观易懂,它的条件也极其简单,易于掌握。2.运用辅助函数证明

构造辅助函数f(x)证明不等式,首先是做函数将要证结论中的积分上限(下限)换成x,移项使不等式的一边为零,另一边的表达式即是辅助函数。然后再求f’(x),并运用单调性及区间端点值特性证明不等式。

例2:设f(x)在[a,b]上连续,且f(x)>0.试证:baf(x)dxba1dx(ba)2 f(x)xxaa证明:构造辅助函数f(x)f(t)dt则f(x)f(x)a

='x1dt(xa)2(将b换成x),f(t)11xdtf(t)dt2(xa)af(t)f(x)xaxf(t)xf(x)dtdt2dt

aaf(t)f(x)f(x)f(t)2)dt

=a(f(t)f(x)xf(x)f(t)20,∵f(x)>0,∴

f(t)f(x)'又a

0,∴f(b)f(a)0,baf(x)dxba1dx(ba)2. f(x)该题构造出积分上限函数,其目的是用单调性来证明不等式。这种方法开门见山、直截了当。3.运用定积分的性质和几何意义证明

与定积分的概念相联系“以直代曲”的“近似代替”的思想,加上积分的几何直观使得不等式的证明变得更加简捷。

例3:证明不等式13sinxdx.

ex(1x2)12esinx1,两端积分得:

ex(1x2)e(1x2)证明:因为1x3时

31sinx131dxx221e(1x)e1x12e

a1例4:设a,b1时,证明不等式abe证明:blnblnxdxb1,e1ba1blnb.

a10exdx1,根据定积分的几何意义知:

(a1)blnxdx1ba10exdxblnbea1b,a1abeblnb.即本题关键在于深刻领悟定积分概念的由来,即求曲边梯形的面积问题推导的四个步骤:分割、取点、作和与求极限,这里充分运用了“近似代替”的几何直观来加以证明。

4.运用拉格朗日中值定理证明

利用拉格朗日中值定理证明不等式,首先要构造满足中值定理条件的函数和区间,然后进行不等式放缩,再用定积分比较定理、估值定理或函数的绝对值不等式等。

m,f(a)0,例5:设f(x)在[a,b]上可导,且f'(x)试证:abf(x)dxm(ba)2.2证明:由题设x[a,b],f(x)在[a,b]上都满足拉氏中值定理的条件,于是有:

f(x)f(x)f(a)f'()(xa),(a,x),m,∵f'(x)∴f(x)m(xa)两边在[a,b]上定积分得:

bamf(x)dxm(ba)dx(ba)2.a2b此题运用拉格朗日中值定理简直如行云流水,如果采用其他办法显然比较繁琐。

5.运用taylor公式证明

当已知被积函数f(x)二阶或二阶以上可导且又知最高阶导数的符号时,通常采用泰勒展开式来证明。首先要写出f(x)的泰勒展开式,然后根据题意写出某些点的泰勒展开式,再进行适当的放缩以变成不等式,最后用定积分的性质进行处理。

例6:设f(x)在[a,b]上单调增加,且f“(x)>0,证明

(ba)f(a)<abf(a)f(b)f(x)dx<(ba)

2证明:先证左不等号:(ba)f(a)<

baf(x)dx,x[a,b],x>a,f(x)单调增加,所以f(x)>f(a)

故baf(x)dx>(ba)f(a)„(1)再证右不等号:baf(x)dx<(ba)f(a)f(b),2t[a,b],f(t)在点x处的taylor展式为:

f(t)f(x)f'(x)(tx)因

1f”()(tx)2,其中在t与x之间,2!f"()>0,f(t)>f(x)f'(x)(tx),所以将tb,ta分别代入上式并相加得:

f(a)f(b)>2f(x)(ab)f'(x)2xf(x),将此式在[a,b]上积分得:

f(a)f(b)(ba)>2af(x)dx(ab)af'(x)dx2axf(x)dx,有2[f(a)f(b)](ba)>4故

bbbbaf(x)dx,baf(a)f(b)f(x)dx<(ba)„(2)

2综合(1)、(2),公式的应用在大学数学的学习中是一个绝对的难点,往往很难掌握。一个题目在你用其他方式很难解决时,taylor公式常会给你意想不到的突破。

6.运用柯西—斯瓦兹不等式证明 柯西—斯瓦兹不等式:

例7:设f(x)在[0,1]上有一阶连续导数且f(1)f(0)1,试证:0[f'(x)]dx1.证明:∵f(1)f(0)1210f'(x)dx,又f(1)f(0)1,所以0f'(x)dx1,因f(x)在[0,1]上可导,所以f(x)在[0,1]上连续,2dx[f'(x)]dx(f'(x)dx)1,由柯西—斯瓦兹不等式得:00011211即是0[f'(x)]dx1.柯西—斯瓦兹不等式是大学数学中的又一难点,虽然记忆起来并不困难,但应用是灵活多变的。

7.运用重积分证明

重积分要化为定积分来计算,这是众所周知的事实,但反之定积分的乘积往往又可以化为重积分,将定积分不等式的证明化为重积分不等式来证明,也是一种常见的方法。

例8:设f(x)是在[0,1]上单调增加的连续函数,12试证:xf0101xf(x)dx23(x)dx13101f3(x)dxf(x)dx122.1102ixf(x)dxf(x)dxf(x)dxxf证明:设(x)dx

00003232xf(x)f(y)dxdyf(x)f(y)ydxdy

=dd3

=ddf3(x)f2(y)(xy)dxdy„(1)

23if(x)f(y)(yx)dxdy„(2)同样

232i(xy)f(x)f(y)(f(x)f(y))dxdy,(1)+(2)可得d由于f(x)在[0,1]上单调增加,故(x∴i1y)(f(x)f(y))0,131000,从而0xfxf(x)dx2313(x)dxf(x)dxf(x)dxxf2(x)dx

012即xf010(x)dx101f3(x)dxf(x)dx2

0总的来说,证明不等式是一门艺术,它具有自己独到的技术手法。在此,我研究了上述7种方法来证明不等式,使一些复杂不等式的证明变得更加简洁,也会使一些不等式的证明变得一题多解。

全文阅读已结束,如果需要下载本文请点击

下载此文档
猜你喜欢 网友关注 本周热点 软件
心中有不少心得感悟时,不如来好好地做个总结,写一篇心得感悟,如此可以一直更新迭代自己的想法。我们想要好好写一篇心得感悟,可是却无从下手吗?以下是我帮大家整理的最
计划是指为了达到某种目标或完成某项任务而做出的详细安排和安排程序的活动,它可以使我们有条不紊地进行工作和生活。计划给我们提供了一定的目标方向和时间节点,让我们能
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?下面我帮大家找寻并整理了一些优秀的计划
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编为大家
时间流逝得如此之快,前方等待着我们的是新的机遇和挑战,是时候开始写计划了。相信许多人会觉得计划很难写?以下是小编为大家收集的计划范文,仅供参考,大家一起来看看吧
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。我们该怎么拟定计划呢?下面是小编整理的个人今后的计划范文,欢迎阅读分享,希望对大家有
演讲稿的撰写过程需要有明确的目标和主题,并进行必要的资料收集和整理。在写演讲稿之前,可以进行充分的资料和内容收集,做好准备工作。以下是小编为大家收集的一些优秀的
演讲稿的语气可以根据主题和情感需要进行调整,既可以庄重严肃,也可以活泼轻松。演讲稿的结构可以采用问题—解决、因果推理、对比论证等方式,以增强逻辑性和说服力。以下
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。写方案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编为大家
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?这里我整理了一
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。写范文的时候需要注意什么呢?有哪些格式需要注
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
一个好的计划需要明确目标、确定步骤和预估成本。要写一份较为完美的计划,首先需要明确目标和任务。以下是小编为大家收集的关于制定计划的范文,希望能够给大家以启示和参
拟定一个明确的计划,有助于我们有条不紊地进行各项活动。制定计划时,我们要考虑到可能遇到的挑战和困难,制定相应的备选方案。最后,希望大家能够善用这些计划范文,根据
科技的快速发展给人们的生活带来了巨大的变化,我们需要思考科技对我们生活的影响和作用。总结要在客观的事实基础上进行,不要带有过多的主观色彩。以下是小编为大家整理的
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?那
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些最新的教案范文,方便大家
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面我给大家整理
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编帮大家整理的优
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大
方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。那么方案应该怎么制定才合适呢?下面是小编为大家收集的方案策划范文,供大家参考借鉴
总结是在一段时间内对某一事物的全面总结和概括。写总结时可以参考一些经典的总结范文,借鉴其优点和特点。面对总结这一任务,我们可以从不同角度和维度去思考和展开,以下
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。什么样的总结才是有效的呢?以下我给大家整理
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家带来的优秀教案范
作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?那么下面我就给大家讲一讲教案怎么写才比较好,我
总结不仅可以找出自己的不足之处,还能够总结出成功和经验的秘诀。总结应该具备简洁明了、条理清晰的特点,方便读者阅读和理解。通过阅读这些总结范文,我们可以对总结的写
总结不仅可以帮助我们反思自己的行为和决策,还可以帮助我们总结经验,为将来的工作和学习做好准备。总结要有层次感,结构清晰,避免内容杂乱无章。欢迎大家阅读以下总结范
无论是学习还是工作,总结都是我们不可或缺的一部分,它可以帮助我们不断提高。总结中怎样抓住关键点,使读者一目了然?请大家积极参考和借鉴这些范文,并自觉遵守学术道德
计划可以帮助我们保持目标的清晰性和方向感。计划的制定需要考虑到自身的优势和短板,制定相应的发展计划和学习计划。希望这些范文可以给大家提供一些启发和借鉴,提高计划
人生天地之间,若白驹过隙,忽然而已,我们又将迎来新的喜悦、新的收获,一起对今后的学习做个计划吧。优秀的计划都具备一些什么特点呢?又该怎么写呢?那么下面我就给大家
总结有助于我们把握事物的本质,提高问题解决能力,做到事半功倍。总结应该突出重点,简练明了,不必罗列所有的细节。如果想了解更多优秀的总结写作,可以参考以下范文进行
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
报告材料主要是向上级汇报工作,其表达方式以叙述、说明为主,在语言运用上要突出陈述性,把事情交代清楚,充分显示内容的真实和材料的客观。大家想知道怎么样才能写一篇比
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那么我们该如何写一篇较为完美的总
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我
演讲稿是在特定场合下为了达到特定目的而准备的一种文字材料。演讲稿的内容要具有说服力,要有充分的论据和实例来支持观点。以下是一些优秀演讲稿范文,供大家参考学习;精
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整
演讲稿也叫演讲词,它是在较为隆重的仪式上和某些公众场合发表的讲话文稿。我们如何才能写得一篇优质的演讲稿呢?下面是小编为大家整理的演讲稿,欢迎大家分享阅读。九年级
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。通过制定计划,我们可以更加有条理地进行工作和生活,提
在信息爆炸的时代,总结可以帮助我们更好地筛选和整理所学知识。写作要注意文章结构的合理性和层次感,以便更好地组织观点。我们整理了一些总结的技巧和方法,希望能对大家
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家
总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们一起来学习写总结吧。写总结的时候需要注
学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么你知道心得体会如何写吗?下面是小编帮大家整理的优秀心得
计划可以帮助我们更好地规划和安排个人和团队的目标,实现更好的个人和集体发展。计划需要经常进行调整和修正,以适应变化的情况。以下是小编为大家收集的计划范例,供大家
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
计划是我们实现成功的重要步骤之一,它为我们的行动提供了指导和方向。制定计划时,可以借鉴他人的经验和成功案例,学习他们的方法和技巧。以下是小编为大家汇总的一些优秀
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为
总结是一个循序渐进和不断完善的过程,能够不断提高自己的综合素养。总结需要客观真实,准确反映所总结的事实和情况。接下来,我们将分享一些优秀的总结范文,希望能给大家
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文
为了确保事情或工作得以顺利进行,通常需要预先制定一份完整的方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。方案对于我们的帮助
演讲稿是一种通过口头陈述的方式来表达观点、传达信息或演示技能的书面材料。它通常用于公开场合,如会议、演讲比赛等,可以提高演讲者的口头表达能力和逻辑思维能力。我们
演讲稿的撰写需要考虑听众的需求和背景,以确保能够产生良好的沟通效果。使用恰当的修辞手法和修辞格能够增加演讲稿的说服力和吸引力。希望以上的范文和技巧对大家写作演讲
演讲稿是一种通过口头表达方式来陈述和阐述特定主题或观点的文本,它可以用于各类公开场合,如会议、演讲比赛等,有助于传达信息和观点,提升说服力。演讲稿应该具备情感共
工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践
演讲稿是进行演讲的依据,是对演讲内容和形式的规范和提示,它体现着演讲的目的和手段。我们想要好好写一篇演讲稿,可是却无从下手吗?接下来我就给大家介绍一下如何才能写
撰写一份令人印象深刻的演讲稿需要一定的技巧和准备工作。写完演讲稿后,还需要多次演练和调整,以达到最佳的演讲效果。以下是小编为大家收集的几篇优秀演讲稿范文,供大家
总结是对学习过程和成果的总结和梳理,可以帮助我们提高学习效率和成绩。制定一个明确的总结目标,明确要表达的主题和重点。总结范文以简洁明了的语言展现了相关内容,让人
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧有关恋爱的动漫篇一从
通过总结,我们可以发现自己的优点和不足,进而做出相应的改进和调整。如何写出有趣、生动的文章?让我们一起来探讨吧。精选几篇优秀的总结范文,让我们一起探索写作的奥秘
环境问题是人类社会面临的重大挑战,我们需要积极采取行动保护环境。写总结时要简明扼要,力求言之有理,语言通顺且表达精确。以范文为参考,可以更好地了解如何在总结中准
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?以下是小编收集整理的教案
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
演讲稿具有宣传,鼓动,教育和欣赏等作用,它可以把演讲者的观点,主张与思想感情传达给听众以及读者,使他们信服并在思想感情上产生共鸣。那么演讲稿该怎么写?想必这让大
合理的计划可以帮助我们提高效率,避免在工作和学习中的无效努力。如果要写一份较为完美的计划,我们首先需要明确目标和任务。看看下面的计划示范,或许能够激发你的灵感和
musicolet
2025-08-21
Musicolet作为一款高质量音乐播放器,确实不负众望。它不仅汇集了海量的音乐资源,包括网络热歌与歌手新作,即便是小众歌曲也能轻松找到,满足不同用户的音乐需求。更重要的是,该软件干扰,提供清晰音质和完整歌词,为用户营造了一个纯净、沉浸式的听歌环境。对于追求高品质音乐体验的朋友来说,Musicolet绝对值得一试。
Anyview阅读器的历史版本是一款出色的在线小说阅读软件,它提供了详尽而全面的小说分类,涵盖了都市、武侠、玄幻、悬疑等多种类型的小说。用户可以随时在线阅读自己喜欢的小说,并且该软件还支持多种阅读模式和功能设置,让用户能够自由地免费阅读感兴趣的内容。这不仅为用户带来了全方位的追书体验,还配备了便捷的书架管理功能,方便用户轻松收藏热门小说资源,并随时查看小说更新情况,以便于下次继续阅读。欢迎对此感兴趣的用户下载使用。
BBC英语
2025-08-21
BBC英语是一款专为英语学习设计的软件,它提供了丰富多样的专业英语学习资源。无论你是想提高口语水平还是锻炼听力能力,这里都有专门针对这些需求的训练内容。此外,该软件还能智能地评估和纠正你的口语发音,帮助你使发音更加标准、记忆更加准确。
百度汉语词典
2025-08-21
百度汉语词典是一款专为汉语学习设计的软件。通过这款软件,用户能够访问到丰富的汉语学习资源,包括详细的学习计划和学习进度统计等功能,提供了非常全面的数据支持。该软件还支持汉字查询,并且可以进行多种词典内容的关联搜索,从而在很大程度上满足了用户对于汉语学习的各种需求。
屏幕方向管理器是一款专为用户提供手机方向控制服务的应用程序。作为一款专业的管理工具,它能够强制调整手机屏幕的旋转方向。这款应用程序提供了多种功能,使用户能够轻松选择个性化的屏幕旋转方式。此外,屏幕方向管理器还具备丰富的设置选项,让用户可以通过简单的操作实现更多个性化配置,使用起来既方便又快捷。

关于我们 | 网站导航 | 网站地图 | 购买指南 | 联系我们

联系电话:(0512)55170217  邮箱: 邮箱:3455265070@qq.com
考研秘籍网 版权所有 © kaoyanmiji.com All Rights Reserved. 工信部备案号: 闽ICP备2025091152号-1