在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
三角函数教学设计初中 三角函数教学设计论文篇一
一、教材分析
二、教法分析
三、学法和能力培养
四、教学程序
五、板书说明
六、效果及评价说明
一、教材分析
4.8节是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。本节课是数形结合思想方法的良好素材。因此,本节课在教材中的知识作用和思想地位是相当重要的。
课时安排 4.8节教材安排为4课时,我计划用5课时 目标和重、难点
1.教学目标
教学目标的确定,考虑了以下几点:
(1)大多数学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(2)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
2. 重、难点
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;
其二,利用函数的周期性规律,抓住“横向距离”和“k∈z"的含义,充分结合图象来理解单调性和对称性
二、教法分析
(一)教法说明 教法的确定基于如下考虑:
(1)只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。(2)教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知。
(2)事先制作正弦函数、余弦函数性质表,让学生当堂完成表格的填写;(3)制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养
为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
因此
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
四、教学程序
(一)导入
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
(二)新知探索 教学过程如下:
师生共同研究得出正弦函数的性质 1.定义域、值域 2.周期性
3.单调性(重难点内容)为了突出重点、克服难点
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;(2)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
** 教师结合图象帮助学生理解并强调 “距离”(“长度”)是周期的多少倍4.对称性
因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
5.最值点和零值点
有了对称性的理解,容易得出此性质。
(三)巩固练习
补充和选作题体现了课堂要求的差异性。
(四)结课
五、板书说明
既要体现原则性又要考虑灵活性
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)
六、效果及评价说明
(一)知识诊断
(二)评价说明
1.针对学生情况对课本进行了适当改编、细化,有利于难点克服和学生主体性的调动.2. 根据课堂上师生的双边活动,作出适时调整、补充(反馈评价);根据学生课后作业、提问等情况,反复修改并指导下节课的设计(反复评价)。希望很久以后留在学生记忆中的不是知识本身,而是方法与思想,是学习的习惯和热情.
三角函数教学设计初中 三角函数教学设计论文篇二
任意角的三角函数(1)
一、教学内容分析:
高一年《普通高中课程标准教科书·数学(必修4)》(人教版a版)第12页1.2.1任意角的三角函数第一课时。
本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。
在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。
二、学生学习情况分析
我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣。我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?
《普通高中数学课程标准(实验)解读》中在三角函数的教学中,教师应该关注以下两点:
第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。
第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象),解决一些实际问题,这也是《课程标准》在三角函内容处理上的一个突出特点。
根据《课程标准》的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:
其一:能从实际问题中识别并建立起三角函数的模型;
其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。
三、设计理念:
本节课通过多媒体信息技术展示摩天轮旋转及生成的图像,让学生感受到数学来源于生活,数学应用于生活,激发同学们学习的乐趣。并通过问题的探究,体验“数学是过程的思想”,改变课程实施过程于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与,乐于探究,勤于动手,培养学生学生收集和处理信息的能力,获得新知识的能力,分析与解决问题的能力以及交流合作的能力。
四、教学目标:
1.借助摩天轮的情景问题很好地融合初中对三角函数的定义,也能很好入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义;
2.从任意角的三角函数的定义认识其定义域、函数值的符号; 3.能初步应用定义分析和解决与三角函数值有关的一些简单问题。
五、教学重点和难点:
1.教学重点:任意角三角函数的定义. 2.教学难点:正弦、余弦、正切函数的定义域.具体设计如下:
opa
六、教学过程
第一部分——情景引入
问题1:如图是一个摩天轮,假设它的中心离地面的高度为ho,它的直径为2r,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置oa出发(如图1所示),过了30秒后,你离地面的高度h为多少?过了45秒呢?过了t秒呢?
图1 【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解。这个数学模型很好融合初中对三角函数的定交,也能放在直角坐标系中,很好地将锐角三角函数的定义向任意角三角函数过渡,揭示函数的本质。
第二部分——复习回顾锐角三角函数
让学生自主思考如何解决问题:“过了30秒后,你离地面的高度为多少?”
【分析】:作图如图2很容易知道:从起始位置oa运
bnompa图2 h动30秒后到达p点位置,由题意知aop300,作ph垂直地面交oa于m,又知mh=ho,所以本问题转变成求ph再次转变为求pm。
要求pm就是回到初中所学的解直角三角形的问题即锐角的三角函数。问题2:锐角的正弦函数如何定义? 【学生自主探究】:学生很容易得到
sin|mp||mp||mp|rsin|ph|h0rsin |op|rhh0rsin
所以学生很自然得到“过了30秒后,过了45秒,你离地面的高度h为多少?”
ph1h0rsin300 h2h0rsin450
【教师总结】:t0在锐角的范围中,oaympomaxhh0rsint0
第三部分——引入新课
问题3:请问t的范围呢?随着时间的推移,你离地面的高度h为多少?能不能猜想
bhh0rsint0?
【分析】:若想做到这一点,就得把锐角的正弦推广到任意角的正弦。今天我们就要来学习任意角的三函数角函数。
问题4:如图建立直角坐标系,设点p(xp,yp),能你用直角坐标系中角的终边上的点的坐标来表示锐角的正弦函数的定义吗?能否也定义其它函数(余弦、正切)?
【学生自主探究】:sin|mp|yp r|op|cos|mp|yp|om|xp,tan |op|r|om|xp问题5:改变终边上的点的位置,这三个比值会改变吗?为什么? 【分析】:先由学生回答问题,教师再引导学生选几个点,计算比值,获得具体认识,并由相似三角形的性质证明。
【设计意图】:让学生深刻理解体会三角函数值不会随着终边上的点的位置的改变而改变,只与角有关系。
通过摩天轮的演示,让学生感受到第一象限角的正弦可以跟锐角正弦的定义一样。
问题6:大家根据第一象限角的正弦函数的定义,能否也给出第二象限角的定义呢?
【学生自主探究】:学生通过上面已知知识得到sin|mp|yp r|op|pxyo学生定义好第二象限角后,让学生自己算出摩天轮座舱在第150秒时,离地面的高度h?
通过摩天轮知道:
图3hh0rsin1500h1h0rsin300
由此得到:sin15001 2【设计意图】:通过这个,让学生检验sin正确?
问题7:sin|mp|yp在第二象限角是否r|op||mp|在第三象限角或第四象限能成立吗? |op|【设计意图】:让学生通过模型,检验定义是否正确,从中让学生自己发现正、负符号的偏差。
(可以让学生取t210,从而hh0rsin2100,得到sin2100=这与sin|mp||mp|不相符,实际上是sin)|op||op|1,发现2【教师总结】:我们通过个模型知道如何在某些范围内如何计算自已此时离地面的高度,用数学模型hh0rsint0来表示,当摩天轮转动,角度的概念也不知不觉地推广到任意角,对于任意角的正弦不能只是依赖于角所在的直角三角形中的对边的长度比斜边长度了,我更应该用点p的横坐标来代替|mp|或|mp|,那么这样就能够很好表示出正弦的函数任意角的定义。
第三部分——给出任意角三角函数的定义
如图3,已知点p(x,y)为角终边上的点,点p到顶点o的距离为r,则
ysin(r)
rxcos(r)
rytan(k)
x2【分析】:让学生通过刚才的模型进一步体验任意角三角函数的定义要点:点、点的坐标、点到顶点的距离。
问题8:当摩天轮的半径r=1时,三角函数的定义会发生怎样的变化。【学生自主探究】:siny,cosx,tany。x教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化。
教师进一步给出单位圆的定义 给出下列表格,让学生自己补充完整。三角函数
sin 定义一:|op|1
y
定义二:|op|r
y rx ry x定义域
r r cos
tan
x
y x2k
及时归纳总结有利学生对所学知识的巩固和掌握。第三部分——例题讲解
例1.(课本p14例2)已知角终边经过点p0(3,4),求角的正弦、余弦和正切值。
【分析】:让学生现学现卖,得用上面的定义二就可以得到答案。
5例2.(课本p14例1)求的正弦、余弦和正
3切值。
【学生自主探究】:让学生自己思考并独立完成。然后与课本的解答相对比一下,发现本题的难
omxyp图4点。
【教师讲解】:本题题意很简单,但是如何入手却是难点,关键是对本节课的三角函数定义的要点有没有领会清楚(任意角三角函数的定义要点:点、点的坐标、点到顶点的距离),因此本题的重点之处是如何利用单位圆找到这个点p,如图4可以知道pom很容易得到本题答案。
不妨让学生取r|op|4,能否也得到点p的坐标,得到的三角函数值是否与单位圆的一样。这样可以让学生更深刻体验三角函数的定义。
第四部分——巩固练习练习1.例2变式求
7的正弦、余弦和正切值。613,又点p在第四象限,得到p(,),这样就可以322练习2.问题9:通过观察摩天轮的旋转,三角函数的角的终边所在象限不同,请说说三角函数在各个象限内的三角函数值的符号?独立完成课本p15的“探究”。
【设计意图】:练习
1、练习2的设计与例
2、例3衔接,主要目的是帮助学生巩固三角函数的本质特征,引导学生从定义出发利用坐标平面内的点的坐标特征自主探究三角函数的有关问题的思想方法。并在特殊情形中体会数形结合的思想方法。
第五部分——小结与作业 学生自我总结
作业:p23习题1.2a组 1,2,3
七、教学反思
上述教学设计及具体教学实施过程我认为有以下几点意义:
1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设是学生熟悉的摩天轮,认知过程符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。
2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。
3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。
4.《标准》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、分析自然现象、解决实际问题的策略, 使学生认识到数学原来就来自身边的现实世界, 是认识和解决我们生活和工作中问题的有力武器, 同时也获得了进行数学探究的切身体验和能力。增进了他们对数学的理解和应用数学的信心。
点评
本节课以新颖背景“摩天轮”引课,从直角三角形的锐角入手,引导学生尝试探究,逐次深入引出任意角的三角函数的定义,以问题形式巩固深化任意角三角函数值的计算,结合平位图直观作用,使学生经历了由浅入深,由易到难,清楚展现了任意角三角函数的生成过程,加深了对任意角三角函数的认识。
新课程教材强调了学生的探究能力的培养,但不意味着每个知识点都需要人为创设情景加以探究,现实的教学由于受教学时数限制,总是希望课堂教学效率高些,任意角的三角函数的定义是否一定要创设情景让学生探究?只要让学生理解有必要引入任意角三角函数概念,然后直接下定义,从课堂教学效率而言,可能会更好些。
三角函数教学设计初中 三角函数教学设计论文篇三
《任意角的三角函数》教学设计
一、教学内容分析
本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。
二、学生情况分析
本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。
三、教学目标
知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。
方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。
情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。
四、教学重、难点分析:
重点:理解任意角三角函数(正弦、余弦、正切)的定义。难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。
五、教学方法与策略:
教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.六、教具、教学媒体准备:
为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角三角函数与它的终边上点的坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.
七、教学过程
(一)教学情景
1.复习锐角三角函数的定义
问题1:在初中,我们已经学过锐角三角函数.如图(课件2)在直角△abc中,∠b是直角,那么根据锐角三角函数的定义,锐角a的正弦、余弦和正切分别是什么?
设计意图:帮助学生回顾初中锐角三角函数的定义.
师生活动:教师提出问题,学生回答. 2.认识任意角三角函数的定义
问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?
设计意图:引导学生将锐角三角函数推广到任意角三角函数.
师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:
(1)能不能继续在直角三角形中定义任意角的三角函数? 以此来引导学生在平面直角坐标系内定义任意角的三角函数.
(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?
进一步引导学生在平面直角坐标系内定义任意角的三角函数.在此基础上,组织学生讨论。
(3)如图2,在平面直角坐标系中,如何定义任意角的三角函数呢?
(4)终边是op的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角θ的终边不在第i象限又该怎么办?
问题3:大家现在能不能给出任意角三角函数的定义了?
设计意图:引导学生在定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.
师生活动:由学生给出任意角三角函数的定义,教师进行整理.
问题4:你能否给出正弦、余弦、正切函数在弧度制下的定义域? 设计意图:通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.
师生活动:学生求出定义域,教师进行整理. 例1:(题目在课件8中)
设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.
3.练习(在课件9中)
设计意图:通过应用三角函数的定义,加强对三角函数概念的理解. 4.小结
问题5:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了.你能再回顾一下任意角三角函数的定义吗?
设计意图:回顾和总结本节课的主要内容.
八、作业设计:
教科书p106习题1.2题.
设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.
九、教学反思:
上述教学设计及具体教学实施过程我认为有以下几点意义:
1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。
2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。
3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。
三角函数教学设计初中 三角函数教学设计论文篇四
《任意角的三角函数》第一课时 教学设计
会宁县第二中学数学教研组
曹蕊
一、教学内容分析
本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。
二、学生情况分析
本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。
三、教学目标
知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。
方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。
情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。
四、教学重、难点分析:
重点:理解任意角三角函数(正弦、余弦、正切)的定义。难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。
五、教学方法与策略:
教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.六、教具、教学媒体准备:
为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.
七、教学过程
(一)教学情景
1.复习锐角三角函数的定义
问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△pom中,∠m是直角,那么根据锐角三角函数的定义,∠o的正弦、余弦和正切分别是什么?
设计意图:帮助学生回顾初中锐角三角函数的定义.
师生活动:教师提出问题,学生回答. 2.认识任意角三角函数的定义
问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?
设计意图:引导学生将锐角三角函数推广到任意角三角函数.
师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:
(1)能不能继续在直角三角形中定义任意角的三角函数? 以此来引导学生在平面直角坐标系内定义任意角的三角函数.
(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?
进一步引导学生在平面直角坐标系内定义任意角的三角函数.在此基础上,组织学生讨论。
(3)如图2,在平面直角坐标系中,如何定义任意角θ的三角函数呢?
(4)终边是op的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角θ的终边不在第i象限又该怎么办?
问题3:大家有没有办法让所得到的定义式变得更简单一点? 设计意图:为引入单位圆进行铺垫.
师生活动:教师提出问题后,可组织学生展开讨论.在学生不能正确回答时,可启发他们思考下列问题:
我们在定义1弧度的角的时候,利用了一个什么图形?所用的圆与半径大小有关吗?用半径多大的圆定义起来更简单易懂些?
问题4:大家现在能不能给出任意角三角函数的定义了?
设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.
师生活动:由学生给出任意角三角函数的定义,教师进行整理. 例1:(题目在课件中)
设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.
问题5:你能否给出正弦、余弦、正切函数在弧度制下的定义域? 设计意图:通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.
师生活动:学生求出定义域,教师进行整理. 问题6:上述三种函数的值在各象限的符号会怎样?
设计意图:通过定义的应用,让学生了解三种函数值在各象限的符号的变化规律,并从中进一步理解三角函数的概念,体会数形结合的思想.
师生活动:学生回答,教师整理. 例2:(题目在课件中)
设计意图:通过问题的解决,熟悉和记忆函数值在各象限的符号的变化规律,并进一步理解三角函数的概念.
师生活动:在完成本题的基础上,可视情况改变题目的条件或结论,作变式训练.
问题7:既然我们知道了三角函数的函数值是由角的终边的位置决定的,那么角的终边每绕原点旋转一周,它的大小将会怎样变化?它所对应的三角函数值又将怎样变化?
设计意图:引出公式一,突出函数周期变化的特点,以及数形结合的思想. 师生活动:在教师引导下,由学生讨论完成. 例3:(题目在课件中)
设计意图:将确定函数值的符号与求函数值这两个问题合在一起,通过应用公式一解决问题,让学生熟悉和记忆公式一,并进一步理解三角函数的概念.
例
4、例5(题目在课件中)3.练习(在课件中)
设计意图:通过应用三角函数的定义,熟悉和记忆特殊角的三角函数值、三角函数值的符号、公式一,以及求三角函数值,加强对三角函数概念的理解.
4.小结
问题8:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了.我们是利用单位圆来定义任意角的三角函数,借助直角坐标系中的单位圆,我们建立了角的变化与单位圆上点的变化之间的对应关系,进而利用单位圆上点的坐标或坐标的比值来表示圆心角的三角函数.你能再回顾一下我们是如何借助单位圆给出任意角三角函数的定义吗?
设计意图:回顾和总结本节课的主要内容.
八、作业设计:
教科书p.24习题1.2a组第6、8题.
设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.
九、教学反思:
上述教学设计及具体教学实施过程我认为有以下几点意义:
1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。
2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。
3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。
三角函数教学设计初中 三角函数教学设计论文篇五
本课教学虽然是复习课,但是学生兴趣盎然,通过本节课的学习把学生学习的三角形单元的各个零散的知识点进行系统梳理,形成知识网络.还通过解决一些实际问题加深对所学知识的理解和运用,还通过一些题组练习区别学生容易混淆的知识点。这样一边整理知识点,一边应用这些知识点解决实际问题,使学生在不知不觉中把三角形的不同知识点有机的联系起来,形成一个完整的知识网络。
1.探索与实践环节
设计目的是让学生感受到复习课,不仅是已学知识的整理复习,同时还是所学知识的延续,更是探索新知的起点。我设计的题目是应用三角形的内角和来探索n边形的内角和,同时也想渗透一点完全归纳法的思想,当然并不是要让学生知道完全归纳法。
2.数学的发展史环节
主要是让学生了解三角形知识的发展史,既是数学的发展史。通过神秘的金字塔中三角形知识的运用,让学生体会到数学历史以及学习数学的快乐,增强学习数学浓厚兴趣。
3.评价与反思环节
设计目的是让学生初步感受更深层次的数学学习评价,让学生逐渐明白学习数学不仅仅只有通过单元测试卷这种书面的形式来评价自己的学习能力和水平,还有更多的评价方法和评价标准,特别是要提醒学生,评价自己是否掌握了学习数学的方法往往比做对了一道题更为重要。
本课重视建构知识网络,发展了学生观察、推理的能力,使学生在复习整理旧知识的同时还能有所获有所得,真正体现了新课提出的练中获得新知,提高了学生的分析综合能力。但是本节课在教学中还没有完全让学生自主回顾、有效参与旧知的整理。
三角函数教学设计初中 三角函数教学设计论文篇六
《锐角三角函数》教学设计
──正弦
本节课是人教版教材九年级(下)第二十八章《锐角三角函数》第一节的第一课时.
一、课前系统部分
1.课标分析:本节主要研究正弦函数,教材从一个实际问题引出对正弦函数的讨论.这个实际问题抽象出数学问题就是在直角三角形中已知一个锐角和这个锐角所对的直角边,求斜边的长.通过讨论30°和45°的角与其所对的直角边和斜边的比值之间的对应关系,引出对一般情况的讨论,即对于任意给定度数的锐角,他的对边与斜边的比值是否是一个固定值.对于任意锐角的正弦函数,教材中利用“相似三角形对应边成比例”探索得出了对应角的对边与斜边的比相等,从而得到在直角三角形中,锐角度数一定时,这个锐角的对边与斜边的比值是一个固定值,由此可以得出正弦函数的概念.2.教材分析:从《数学课程标准》看,本节是“空间与图形”领域的重要内容.掌握锐角三角函数的概念和解直角三角形的方法是学习三角函数和解斜三角形的重要基础.同时,锐角三角函数建立了锐角与比值之间的一一对应关系,通过学习可以使学生对函数的定义域、值域有进一步的认识,对函数的基本概念有了更深刻的了解.本节正弦函数的学习是学生研究锐角三角函数的起点,正弦函数的概念为后面学习余弦函数和正切函数的概念提供了思想上和学习方法上的引导.3.学生分析:学生已经学习了三角形、相似三角形、勾股定理以及函数相关知识,为学习锐角三角函数奠定基础的同时具备了一定的逻辑思维能力和推理能力.在学习过程中学生可能遇到一些困难,下面我将学生可能遇到的困难以及应对措施叙述如下:
困难①:本节学生首次接触到以角度为自变量的三角函数,学生很难想到在直角三角形中,锐角的度数固定,它的对边与斜边的比值也是固定的.应对措施①:采用由特殊到一般的方法展开讨论:在讨论直角三角形中,30°和45°角的对边与斜边的比为固定值的基础上讨论锐角为任意给定度数的情形.这种由特殊到一般的过渡,可以使学生有较多的机会体验:在直角三角形中,当锐角度数一定时,这个锐角的对边与斜边的比值是一个固定值.这为认识正弦函数的概念铺设了必要的台阶,从而水到渠成地概括给出正弦函数的概念.困难②:对正弦概念的理解.学生能理解在直角三角形中,当锐角固定时,其对边与斜边的比值就固定,但将这一过程与变化的过程联系起来有一困难,也就是与函数联系起来有一定困难,因此对正弦概念的理解存在困难.应对措施②:在已有特殊角的经验之上结合几何画板直观演示,让学生从演示的变化过程中体会:无论直角三角形的大小如何,每固定一个角度,都有唯一的一个比值与之相对应.从而建立直角三角形中锐角与比值之间的对应关系.在这个过程出巧妙地设计问题引导学生将新知与旧知(函数知识)联系起来,从而更好的理解锐角三角函数中正弦的概念.4.目标分析
(一)教学目标
知识与技能:
1、理解锐角正弦的意义,并能运用sina表示直角三角形中两边的比.2、能根据正弦概念正确进行计算.过程与方法:
1、经历探索直角三角形中的边与角的关系,培养学生由特殊到一般的演绎推理能力.2、通过学生自我发现培养学生的自我反思能力,通过提出困惑提升学生发现问题的能力.情感态度价值观:
1、在主动参与探索概念的过程中,发展学生的合情推理能力和合作交流、探究发现的意识.2、培养学生独立思考的习惯以及使学生获得成功的体验,建立自信心.(二)教学重点、难点:
重点:理解认识正弦(sina)概念,能用正弦概念进行简单的计算.难点:
1、引导学生比较、分析并得出:对任意给定锐角,它的对边与斜边的比值是固定值.2、正弦概念的理解.突出重点、突破难点的策略 从生活实际入手,结合多媒体直观演示,并通过系列探究活动引导学生合作交流,作图、猜想论证,配合由浅入深的练习,使学生不但知道对任意给定锐角,它的对边与斜边的比值是固定值,而且加以论证并会运用.5.教学方法
本节采用“探究——推理——发现”模式.在教法上突出活动的组织设计与方法的引导.在学法上突出探究、推理、猜测与论证.在教学设计过程中我力求让学生参与知识发现的全过程,体现以学生为主体,以促进学生发展为本的教学理念,变教师知识的传授者的身份为学生自主探求知识的引导者、指导者、合作者.教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、推理与发现.6.教学用具
教具:多媒体、课件、三角板.学具:三角板等作图工具.二﹑课堂系统部分---教学过程 环节
(一):创设情境、引入新知
教师活动1:结合书本比萨斜塔引例引入本课 2:电脑展示教材61页问题
问题
为了绿化荒山,市绿化办打算从位于山脚下的机井房沿着山坡铺设水管,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管? 提出问题:你能将实际问题归结为数学问题吗?
学生活动:熟悉背景,从中发现数学问题.同时思考、探求解决问题的途径和方法.设计意图:
结合比萨斜塔实际情况为背景创设情境,引发学生兴趣.培养学生发现数学并将实际问题转化为数学问题的能力; 环节
(二):探求新知,发现规律 1.解决问题
隐去引例中的背景材料后,直观显示出图中的rt△abc
(1)想一想:你能用数学语言来表述这个实际问题吗?与同伴交流.教师活动:多媒体课件出示问题;了解学生语言组织情况并适时引导; 学生活动:组织语言与同伴交流.设计意图:培养学生用数学语言表达的意识,提高数学语言表达能力.(2)出示学生总结并完善后的数学问题:
在rt△abc中,∠c=90°,∠a=30°,bc=35m,求ab.(3)议一议(出示教材61页的思考):在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?
教师活动1:出示问题.2:观察学生解决问题的表现,适时引导.学生活动:应用旧知解决问题.设计意图:让学生初步意识到“比值”以及“固定值”的表达,为得出结论奠定基础.(4)归纳:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.教师活动:引导学生用准确的语言组织.学生活动:独立思考,得出结论.设计意图:
让学生从这一情景中得知我们研究的重点不再是“直角三角形中,30°角所对的直角边是斜边的一半”,把注意力转移到“直角三角形中,30°角的对边与斜边的比值是”.让“比值”的研究首先进入学生的视野,建立了数学模型,为下一环节顺利进行奠定基础.2.类比思考 议一议:(出示教材61页的思考)
如图,任意画一个rt△abc,使∠c=90°,∠a=45°,计算∠a的对边与斜边的比,你能得出什么结论?
教师活动:出示问题;观察基础薄弱的学生的反应或与他们共同讨论.学生活动:思考、解决问题.设计意图:由特殊到一般的过渡,强化了学生对“比值”的关注,点击重点.3.归纳猜想
(1)归纳:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.在一个直角三角形中,如果一个锐角等于45°,那么不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于.(2)猜想:在直角三角形中,当锐角a 的度数一定时,不管三角形的大小如何,它的对边与斜边的比也是一个固定值.教师活动:引导学生用准确的语言归纳猜想.学生活动:思考、交流、语言表达.设计意图:
让学生体验合理的猜想是数学学习中研究问题的方法之一.为学生提供了自主探究的空间,提高学生的说理能力,增强语言表达能力.环节
(三):证明猜想,形成概念
1.在“几何画板”课件制作平台中演示、验证猜想.教师活动:多媒体演示.学生活动:体验成功的快乐.设计意图:运用现代教育手段,让学生感受到自己猜想的正确性的快乐.2.证明猜想
教师活动:出示猜想,观察学生的思考方向,引导学生找到证明猜想的方法.(出示教材62页探究)任意画rt△abc和rt△abc,使得∠c=∠c=90.∠a=∠a,那么与
有什么关系.你能解释一下吗? 学生活动:思考、寻找方法并验证.设计意图:
培养学生的论证意识,提高学生自己设计探究活动的能力.通过证明认识到“在直角三角形中,当锐角a的度数一定时,不管三角形的大小如何,∠a的对边与斜边的比也是一个固定值”的结论,从而引出“正弦”的概念,突出重点.3.形成概念
正弦的概念及表示
如图,在rt△abc中,∠c=90°,我们把锐角a的对边与斜边的比叫做∠a的正弦(sine),记作sina,即
注意:正弦的三种表示:sina(省去角的符号)、sin39°、sin∠def.教师活动:课件给出概念,解释并强调正弦的符号、符号所表示的意义、正弦的表示方法.学生活动:理解正弦的概念以及正弦的表示.设计意图:概念的引入已是水到渠成,让学生在一系列的问题解决中,经历一个数学概念形成的一般研究过程.环节
(四):理解概念、应用提升
1、概念辨析
教师活动:
提问:如图:∠b的正弦怎么表示? 出示判断是非:
(1)sina表示“sin”乘以“a”.()
(2)如图,sina=
(m)
()
(3)在rt△abc中,锐角a的对边和斜边同时扩大100倍,sina的值也扩大100倍()
(4)如图,∠a=30°,则sina=
.()
学生活动:思考,理解概念.设计意图:
通过判断是非加深学生对正弦概念的理解,随着问题的解决更加深了学生对角度与比值的对应关系的关注,进一步的渗透了函数思想.通过是非判断引导学生注意:
①sina不是 sin与a的乘积,而是一个整体.②sina 是线段之间的一个比值,没有单位.③一个角的正弦值与边的大小无关,只与角的大小有关,锐角一旦确定,正弦值随之确定.2、例题讲解 教材63页例题一
例1 如图,在rt△abc中,∠c=90°,求sina和sinb的值.
教师活动:课件出示例1,引导学生相互口述解题方法后,派代表详细叙述,同时出示详细解题过程(板书).学生活动:分析、思考解题的方法,小组交流讨论,互相评议,组织语言叙述解题的过程.设计意图:
为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升.巩固正弦的概念,形成能力.规范学生的解题格式,为学生完全独立的解决问题尽可能的排除了障碍.3、巩固新知
(1)在rt△abc中,∠c=90°,bc=2,sina=,则ac的长是()
a.b.3
c.d.(2)在rt△abc中,∠c=90°∠a=60°,求sina的值.
(3)(依据认知水平)在rt△abc中,∠c=90°,ac=2,sina=.,求ab、bc的长.教师活动:课件出示练习学生活动:分析、独立思考,设计意图:
为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升.巩固正弦的概念,使学生对知识的理解与应用螺旋上升,形成能力,达到了较高要求.体现了“实际——理论——实际”的过程,帮助学生形成从实际问题中抽象出数学问题,得出结论,再用来解决实际问题的学习数学的思路,符合新课程标准要求的“实际问题——建立模型——解释、应用与拓展”的思路.环节
(五):自我评价、总结反思 问题1:本节课你有哪些收获? 教师活动:引导学生思考回答.学生活动:回顾、思考、组织语言回答.设计意图:
引导学生回顾自己的学习过程,畅所欲言,加强反思,提炼以及将知识纳入自己的知识结构.帮助学生提炼本节课的重要知识点和必须要掌握的技能----(1)在直角三角形中,当锐角a的度数一定时,不管三角形的大小如何,∠a的对边与斜边的比都是一个固定值.(2)在rt△abc中,∠c=90°,我们把锐角a的对边与斜边的比叫做∠a的正弦,记作sina.问题2:本节课你认为自己解决的最好的问题是什么? 教师活动:一边口述、一边课件出示问题.学生活动:回顾、思考、与同伴交流、组织语言回答.设计意图:
有目的的引导学生发现自己在合作学习、解决问题的过程中能否提出有价值的解决方案,能否与他人沟通合作等等.培养学生自我认同,自我发现、自我反思的意识.这一环节与同学交流可以让学生感受到来自同学的信任,感受到被同学肯定的快乐.问题3 :你还有什么困惑吗? 教师活动:出示问题.学生活动:思考、组织语言说感受、困惑.设计意图:
引发学生进一步的思考.布置作业
1、对于自己还存在的疑惑利用业余时间查阅书籍或者上网查寻.2、教材68页习题28.1第一、四题(仅求正弦值).三、课后系统部分——教学后记
“教必有法,而教无定法”,只有方法恰当,教学才会有效.1.本节课的教学内容以实际生活中的问题情景呈现出来,给了学生亲切感,提高了学生的学习兴趣,让学生感受到了数学来源于生活,学生通过合作交流、发现规律,能够体会到学习数学的价值.
2.本节课以让学生进行独立思考,共同探索、验证猜想为主线的课堂形式组织教学,因此在课堂教学中,给了学生更多展示自己的机会,有助于培养学生理性思维的习惯达到课程目标的教学要求.
3.在教学的具体实施中,需要老师不失时机的进行引导,让学生在充分思考的同时,找出思维漏洞,使他们在自我认识、自我完善的基础上学会从不同角度考虑问题.
4、通过小组活动以及学生的互评加深学生对知识的掌握的同时让学生感受到被同学认可的快乐,增进学生之间的感情.
三角函数教学设计初中 三角函数教学设计论文篇七
《锐角三角函数》教学设计
──正弦
一、学习目标
知识与技能:
1、通过自主探究知道当直角三角形的锐角固定时,它的对边与斜边的比值使固定值,引出正弦概念。
2、理解正弦概念并能根据正弦概念正确进行计算。过程与方法:
1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值使固定值,引出正弦概念,培养学生由特殊到一般的归纳推理能力。
2、经过概念的发现与学习,认识数学中存在很多规律,学会思考,善于发现。情感态度价值观:
引导学生体验数学活动中充满着探索与发现,并使值能积极参与数学学习活动,学会用数学的思维方式思考、发现、总结、验证。
(二)学习重点、难点:
重点:理解认识正弦(sina)概念,能用正弦概念进行简单的计算。
难点:引导学生比较、分析并得出:对任意给定锐角,它的对边与斜边的比值是固定值。
突出重点、突破难点的策略
从生活实际入手,结合多媒体直观演示,并通过系列探究活动引导学生合作交流,作图、猜想论证,配合由浅入深的练习,使学生不但知道对任意给定锐角,它的对边与斜边的比值是固定值,而且加以论证并会运用。
二、教学方法
1、教法学法:
本节采用“自主学习——合作探究——推理——发现”模式。教师的教法:突出活动的组织设计与方法的引导。学生的学法:突出探究、推理与发现。
2、课前准备:
教具:多媒体、课件、三角板。学具:三角板等作图工具。
三、教学过程
(1)、复习检测:你知道直角三角形有哪些性质吗? 有一个锐角是30°的直角三角形有哪些性质特点? 有一个锐角是45°的直角三角形有哪些性质特点?(2)、出示学习目标
(3)、自主学习,看教材61页-63页,思考并回答(板书)
问题
1、在直角三角形中,30°角所对的直角边与斜边的比是多少?为什么? 问题
2、在直角三角形中,45°角所对的直角边与斜边的比是多少?为什么? 问题
3、在直角三角形中,当锐角a的读数一定,无论这个直角三角形大小如何,锐角a对边与斜边的比都是一个固定值吗?为什么?
(4)、解决问题,提升认识
问题
1、电脑展示教材61页引例。
问题
为了绿化荒山,市蓝天办打算从位于山脚下的机井房沿着山坡铺设水管,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
提出问题:你能将实际问题归结为数学问题吗?
学生活动:从中发现数学问题。同时思考、探求解决问题的途径和方法。设计意图:
培养学生发现数学并将实际问题转化为数学问题的能力;
2、解决问题
隐去引例中的背景材料后,直观显示出图中的rt△abc
(1)想一想:你能用数学语言来表述这个实际问题吗?与同伴交流。
教师活动:多媒体课件出示问题;了解学生语言组织情况并适时引导; 学生活动:组织语言与同伴交流。
设计意图:培养学生用数学语言表达的意识,提高数学语言表达能力。(2)出示学生总结并完善后的数学问题:
在rt△abc中,∠c=90°,∠a=30°,bc=35m,求ab。
(3)追问(出示教材61页的思考):在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?
教师活动1:出示问题。2:观察学生解决问题的表现,适时引导。学生活动:应用旧知解决问题。
设计意图:让学生初步意识到“比值”以及“固定值”的表达,为得出结论奠定基础。
(4)归纳:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于
。教师活动:引导学生用准确的语言组织。学生活动:独立思考,得出结论。
设计意图:让学生从这一情景中得知我们研究的重点不再是“直角三角形中,30°角所对的直角边是斜边的一半”,把注意力转移到“直角三角形中,30°角的对边与斜边的比值是”。
让“比值”的研究首先进入学生的视野,建立了数学模型,为下一环节顺利进行奠定基础。
问题
2、类比思考,议一议:(出示教材62页的思考)
如图,任意画一个rt△abc,使∠c=90°,∠a=45°,计算∠a的对边与斜边的比,你能得出什么结论?
教师活动:出示问题;观察基础薄弱的学生的反应或与他们共同讨论。学生活动:思考、解决问题。
设计意图:由特殊到一般的过渡,强化了学生对“比值”的关注,点击重点。问题
3、归纳猜想,引导探究
(1)归纳:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于
;在一个直角三角形中,如果一个锐角等于45°,那么不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于。
(2)猜想:在直角三角形中,当锐角a 的度数一定时,不管三角形的大小如何,它的对边与斜边的比也是一个固定值。
教师活动:引导学生用准确的语言归纳猜想。学生活动:思考、交流、语言表达。
设计意图:让学生体验合理的猜想是数学学习中研究问题的方法之一。(3)合作探究,形成概念
1。合作探究:出示教材62页探究,任意画rt△abc和rt△abc,使得∠c=∠c=90。∠a=∠a=α,那么
与有什么关系.你能解释一下吗?
教师活动:引导学生相互口述解题方法后,派代表详细叙述,学生活动:小组交流讨论,互相评议,寻找方法并验证。
设计意图:培养学生的论证意识,提高学生自己设计探究活动的能力。
通过证明认识到“在直角三角形中,当锐角a的度数一定时,不管三角形的大小如何,∠a的对边与斜边的比也是一个固定值”的结论,从而引出“正弦”的概念,突出重点。
2、形成概念
正弦的概念及表示
如图,在rt△abc中,∠c=90°,我们把锐角a的对边与斜边的比叫做∠a的正弦(sine),记作sina,即
注意:正弦的三种表示:sina(省去角的符号)、sin39°、sin∠def。
教师活动:课件给出概念,解释并强调正弦的符号、符号所表示的意义、正弦的表示方法。
学生活动:理解正弦的概念以及正弦的表示。
设计意图:概念的引入已是水到渠成,让学生在一系列的问题解决中,经历一个数学概念形成的一般研究过程。
问题4:理解概念,提升能力
1、概念辨析
教师活动:提问:∠b的正弦怎么表示? 出示判断是非:(1)sina表示“sin”乘以“a”。
()
(2)如图,sina=(m)
()
(3)在rt△abc中,锐角a的对边和斜边同时扩大100倍,sina的值也扩大100倍()
(4)如图,∠a=30°,则sina=。
()
学生活动:思考,理解概念。
设计意图:通过判断是非加深学生对正弦概念的理解,随着问题的解决更加深了学生对角度与比值的对应关系的关注,进一步的渗透了函数思想。
①sina不是 sin与a的乘积,而是一个整体。②sina 是线段之间的一个比值,没有单位。
③一个角的正弦值与边的大小无关,只与角的大小有关,锐角一旦确定,正弦值随之确定。
2、例题讲解 教材63页例题
例1 如图,在rt△abc中,∠c=90°,求sina和sinb的值.
教师活动:课件出示例1,引导学生相互口述解题方法后,派代表详细叙述,同时出示详细解题过程(板书)。学生活动:分析、思考解题的方法,小组交流讨论,互相评议,组织语言叙述解题的过程。
设计意图:为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升。巩固正弦的概念,形成能力。规范学生的解题格式,为学生完全独立的解决问题尽可能的排除了障碍。
3、当堂检测
(1)、在rt△abc中,∠c=90°,bc=2,sina=
a、4 d、3,则ac的长是()
b、3
c、1(2)、在rt△abc中,∠c=90°,ac=2,sina=,求ab、bc的长。
3(3)、等腰△abc中,ab=ac=5,bc=6,求sina,sinb。
4(4)在rt△abc中,∠c=90°,bc=20,sina=,求△abc的面积。
5教师活动:课件出示练习学生活动:分析、独立思考,设计意图:为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升。巩固正弦的概念,使学生对知识的理解与应用螺旋上升,形成能力,达到了较高要求。
体现了“实际——理论——实际”的过程,帮助学生形成从实际问题中抽象出数学问题,得出结论,再用来解决实际问题的学习数学的思路,符合新课程标准要求的“实际问题——建立模型——解释、应用与拓展”的思路。
(5):总结反思
问题1:本节课你有哪些收获?你还有什么困惑吗? 教师活动:引导学生思考回答。
学生活动:回顾、思考、组织语言回答。
设计意图:引导学生回顾自己的学习过程,畅所欲言,加强反思,提炼以及将知识纳入自己的知识结构。
帮助学生提炼本节课的重要知识点和必须要掌握的技能----(1)在直角三角形中,当锐角a的度数一定时,不管三角形的大小如何,∠a的对边与斜边的比都是一个固定值。(2)在rt△abc中,∠c=90°,我们把锐角a的对边与斜边的比叫做∠a的正弦,记作sina。
四、布置作业
必做:教材68页习题28。1第一题(仅求正弦值);选做:教材69页第八题夹角改为30°,求面积。
三角函数教学设计初中 三角函数教学设计论文篇八
解直角三角形教学设计
一、教学目标
知识技能目标
1.使学生理解解直角三角形中五个元素的关系,及什么是解直角三角形
2。会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形。
数学思考与问题解决:通过综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。
情感态度 :渗透数形结合的数学思想,培养学生综合运用知识的能力和良好的学习习惯。
重点 :直角三角形的解法。
难点:三角函数在解直角三角形中的灵活运用。
二、学法
学生自主探究、合作交流
三、教学准备
多媒体课件,教案,三角板
四、教学过程设计
解直角三角形
一.复习引入
1.在直角三角形中,共有三条边,三个角,你能根据所学谈谈他们之间的关系吗?
2.在直角三角形中,30度,45度,60度的锐角的正弦、余弦、正切值分别为多少?
设计意图:回顾复习直角三角形中边与边、角与角、边与角之间的关系,以及特殊角的三角函数值,为解直角三角形打下基础。二.新知探索 1,情境引入
意大利的比萨斜塔高54.5米,在1350年落成时就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年比萨地区发生地震造成塔顶中心点偏离垂直中心线增至5.2米。根据这些信息,若用“塔身中心线于垂直中心线所成的角α”来描述比萨斜塔的倾斜程度,你能完成吗?
师生共同探究,把这个实际问题转化为数学问题,即已知在rt△abc中,∠c=90sinabc°,bc=5.2m5,.ab=54.5m,求∠a
ab254.50.0954 所以∠ a≈5°28′
2.概念学习
c
b
a
如果将上述实际问题抽象为数学问题,就是已知直角三角形的斜边和一条直角边,求它的锐角的度数。
一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角。由直角三角形中的已知元素,求出其余位置元素的过程,叫做 解直角三角形。
设计意图:通过实际问题引入,激发学生学习热情,培养其分析问题解决问题的能力,引出解直角三角形的概念。
3.探究二(1)在直角三角形中,除直角外,其他的五个元素之间有什么关系?
(2)知道五个元素中的几个就可以求出其他元素?
师生行为:教师提出问题,引起学生思考分析。教师根据学生回答汇总归纳,并作简要讲评。学生理解归纳,重点在于理解解直角三角形的方法。
设计意图:通过学生探究,理解什么是解直角三角形,并掌握解直角三角形的方法,学会解直角三角形(本节的关键和核心所在)。三.例题讲解
例.在rt△abc中,∠c=90°,∠b=35°,b=20,解这个直角三角形.(精确到0.1)参考值
tan35°≈0.70
sin35° ≈0.57
cos35°≈0.82
b a
c
c
a b
b35a90b903555
bab2020a28.6tanbtan350.70tanbbsinbcb2020c35.1sinbsin350.57
师生行为:学生根据解直角三角形的定义和方法进行分析,选择最简便的方法独立完成例1,并作自我评价,以掌握方法。教师板书出过程,强调规则。
设计意图:通过例题学会灵活运用直角三角形有关知识解直角三角形,并能熟练分析问题,掌握方法。四.巩固训练。
1.在rt△abc中,∠c=90度,a,b,c分别是∠a,∠b,∠c的对边.(1)已知
∠b=45度,b=√6 解这个直角三角形
(2)已知
∠a-∠ b=30度,b+c=30 ,解这个直角三角形
2.在rt△abc中,∠c为直角,ac=6,∠bac的平分线ad=4√3,解此直角三角形。
3.在△abc中,∠c=90度,sina=,d为ac上的一点,∠bdc=45度,dc=6.求ab的长。
师生行为:学生独立完成并板书,教师简要讲评。
设计意图:巩固所学,加深认识,不断提高。
五,课堂小结。
1、解直角三角形的概念:
.2、在rt△abc中,边角之间的关系:(1)三边的关系:(2)两锐角之间的关系:(3)边角之间的关系:
a的对边ab的对边bsina,sinb斜边c斜边c
a的邻边bb的邻边bcos,cosb a斜边c斜边ca的对边ab的对边b
tana,tanb,a的邻边bb的邻边a
3.解直角三角形的一般方法:
(1)在遇到解直角三形的问题时,最好先画一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的。以得于分析解决问题
(2)选取关系式时要尽量利用原始数据,以防止“累积错误”(3)解直角三角形的方法遵循“有斜用弦,无斜用切; 宁乘勿除,化斜为直”
师生行为:囧事引导学生自我总结,梳理知识结构,结合实例归纳解法,明晰思路。
设计意图:梳理汇总,提炼方法,形成系统,自我提升。六.布置作业
1、课本p84的1,2,3,6 2 如图,根据图中已知数据,求
△abc其余各边的长,各角的度数和△abc的面积.a
4cm
450
300
b c
三角函数教学设计初中 三角函数教学设计论文篇九
三角函数
1教学目标
⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形
⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. ⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯.
2学情分析
学生在具备了解直角三角形的基本性质后再对所学知识进行整合后利用才学习直角三角形边角关系来解直角三角形。所以以旧代新学生易懂能理解。
3重点难点
重点:直角三角形的解法
难点:三角函数在解直角三角形中的灵活运用 以实例引入,解决重难点。
4教学过程 4.1 第一学时 教学活动 活动1【导入】
一、复习旧知,引入新课
一、复习旧知,引入新课
1.在三角形中共有几个元素? 2.直角三角形abc中,∠c=90°,a、b、c、∠a、∠b这五个元素间有哪些等量关系呢?
答:(1)、三边之间关系 : a2 +b2 =c2(勾股定理)(2)、锐角之间关系:∠a+∠b=90°(3)、边角之间关系
以上三点正是解的依据.
3、如果知道直角三角形2个元素,能把剩下三个元素求出来吗?经过讨论得出解直角三角形的概念。
复习直角三角形的相关知识,以问题引入新课
注重学生的参与,这个过程一定要学生自己思考回答,不能让老师总结得结论。
ppt,使学生动态的复习旧知
活动2【讲授】
二、例题分析教师点拨
例1在△abc中,∠c为直角,∠a、∠b、∠c所对的边分别为a、b、c,且b=,a=,解这个直角三角形. 例2在rt△abc中,∠b =35o,b=20,解这个直角三角形
活动3【练习】
三、课堂练习学生展示
完成课本91页练习
1、rt△abc中,若sina= ,ab=10,那么bc=_____,tanb=______.
2、在rt△abc中,∠c=90°,a=,c=,解这个直角三角形.3、如图,在△abc中,∠c=90°,sina= ab=15,求△abc的周长和tana的值
4、在rt△abc中,∠c=90°,∠b=72°,c=14,解这个直角三角形(结果保留三位小数).活动4【活动】
四、课堂小结
1)、边角之间关系 2)、三边之间关系
3)、锐角之间关系∠a+∠b=90°.
4)、“已知一边一角,如何解直角三角形?”
活动5【作业】
五、作业设置
课本 第96页习题28.2复习巩固第1题、第2题.
三角函数教学设计初中 三角函数教学设计论文篇十
2008.(本小题满分12分)
已知函数f(x)2sin
x4cos
x4
2
x4
.
(ⅰ)求函数f(x)的最小正周期及最值;
π
,判断函数g(x)的奇偶性,并说明理由. 3x2
2sin
(ⅱ)令g(x)fx
解:
(ⅰ)f(x)sin
x4)sin
x2
xπ
2sin223x
.
f(x)的最小正周期t
2π12
4π.
当sin
x2
πxπ
时,取得最小值;当 21sinf(x)1时,f(x)取得最大值2.
323
x2
ππ
.又g(x)fx. 33
(ⅱ)由(ⅰ)知f(x)2sin
1
g(x)2sin
2
ππxxπx2cos. 2sin
23322
xx
g(x)2cos2cosg(x).
22
函数g(x)是偶函数.
2009.(本小题满分12分)
已知函数f(x)asin(x),xr(其中a0,0,0交点中,相邻两个交点之间的距离为(ⅰ)求f(x)的解析式;(ⅱ)当x[【解】
(ⅰ)由最低点为m(23,2)得a2.
223)的图象与x轴的,2).,且图象上一个最低点为m(,
122
],求f(x)的值域
由x轴上相邻两个交点之间的距离为由点m(故
43
23
得
t2
,即t,∴
43
2t
2
2.,2)在图象上得2sin(2
23
)2,即sin(116
)1,2k
,kz,∴2k.
又0(ⅱ)∵x[
当2x
当2x6,2,∴6,故f(x)2sin(2x6[6). 122],∴2x73,6],
6276,即x6时,f(x)取得最大值2; 2,即x时,f(x)取得最小值1,故f(x)的值域为[1,2].
2010.(本小题满分12分
如图,a,b
是海面上位于东西方向相距53海里的两个观测点,现位于a点北偏东45°,b点北偏西60°的d点有一艘轮船发出求救信号,位于b点南偏西60°且与b点
相距c点的救援船立即即前往营救,其航行
速度为30海里/小时,该救援船到达d点需要多长时间?
解:由题意知海里,dba906030,dab45,adb105
在dab中,由正弦定理得
absindab
sinadbdbsindababsin
adb dbsin105sin45cos60sin60cos45
2,(海里)
又dbcdbaabc30(9060)60,bc海里,在dbc中,由余弦定理得
cdbdbc2bdbccosdbc
222
= 30012002cd30(海里),则需要的时间t12900 1(小时)。30
答:救援船到达d点需要1小时。
注:如果认定dbc为直角三角形,根据勾股定理正确求得cd,同样给分。
2011.(本小题满分12分)
叙述并证明余弦定理。
解余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦
之积的两倍。或:在abc中,a,b,c为a,b,c的对边,有
abc2bccosa
222bac2accosb 222
cab2abcosc 222
证法一 如图 2abcbc (acab)(acab)22ac2acabab
2
2ac2acabcosaab
b2bccosac 22即a2b2c22bccosa 同理可证b2a2c22accosb cab2abcosc 222
证法二 已知abc中a,b,c所对边分别为a,b,c,以a为原点,ab所在直线为x轴,建立直角坐标系,则c(bcosa,bsina),b(c,0),bcosa2bccosacbsina
bac2accosb 22222222abc22(bcosac)(bsina)22
同理可证 bca2cacosb,cab2abcosc.222222
2012.(本小题满分12分)
函数f(x)asin(x
间的距离为
26)1(a0,0)的最大值为3,其图像相邻两条对称轴之,(1)求函数f(x)的解析式;
(2)设(0,
2),则f(
2)2,求的值.
【解析】(ⅰ)∵函数fx的最大值是3,∴a13,即a2。∵函数图像的相邻两条对称轴之间的距离为
故函数fx的解析式为f(x)2sin(2x)1。6
1(ⅱ)∵f()2sin()12,即sin(),6622
∵0,∴,∴,故。6636623,∴最小正周期t,∴2。
三角函数教学设计初中 三角函数教学设计论文篇十一
教学设计
学校:沙雅县第二中学 年级:高中 电话:*** 内容:高中数学必修四第一章1.4三角函数的图像性质第一课时三角函数的图像与性质
(一)
本节课教材是人教版必修四第四课(1.4)>,可将其划分为三小节来设计,即:>、>、>。
一、教学内容分析
本节课是学生学习了函数的定义、图象和性质,掌握了研究函数的一般思路,并对三角函数的基本知识比较熟悉的情况下,进一步利用函数图象来研究三角函数的有关性质,为学生以后利用数形结合的方式来解决有关三角函数方面的知识做铺垫,同时,可以对高中阶段系统研究指数函数、对数函数、导函数等做铺垫,进一步巩固和深化三角函数的概念和性质等知识,融会贯通前面所学的函数的基本性质,使学生得到较系统的掌握函数知识和研究函数的方法,掌握运用三角函数图像来解决有关问题。
二、教学目标分析
1、知识与技能:(1).能画出y=sin x, y=cos x的图像,了解三角函数的周期性;(2).借助图像理解正弦函数、余弦函数在[0,2π](如单调性、最大和最小值、图像与x轴交点及奇偶性等);
2、过程与方法:培养学生应用所学知识解决问题的能力,独立思考能力,规范解题的标准。
3、情感态度与价值观:培养学生全面的分析问题和认真的学习态度,渗透辩证唯物主义思想。
三、学情分析 教学背景
本课是高一年级必修四的一堂数学基础课程,本节课主要学习通过图像来研究三角函数的有关性质。在通过简谐运动的现象,得到正弦或余弦函数图像。在运用五点法作出它们的图像,让学生分小组讨论,总结和概括它们的性质,后期会用同样方法来研究正切图像和它的相关性质。
学生背景:
高一学生已具备一定的教学知识和学习能力,所教的班是重点班,对于知识的归纳总结也有一定的能力,对于新问题,有主动思考问题、探索问题的信习和勇气,因此,本课遵循“以教师为主导,学生为主体”,“数学教学是数学活动的教学”等教学思想,把提问题作为教学出发点,指导尝试,总结反思。
四、教学手段,教学方法
讲练结合,教师引入,提出问题,学生探究通过五点法做出正弦函数与余弦函数图像。并且能够运用图像变换,得到其他形式的函数图像。通过图像,总结概括出正弦函数、余弦函数的性质,即周期性、奇偶性、单调性、最值。同时,学生在老师的引导下,探究利用单位圆中的三角函数线研究正弦函数、余弦函数的性质。
五、教学重难点分析
(一)教学重点
(1)学会运用五点法画出正弦函数、余弦函数图像。
(2)掌握正弦函数、余弦函数的相关性质,即(周期性、奇偶性、单调性、值域、最值等)。
(二)教学难点
(1)正弦函数,余弦函数的图像及性质应用方法和技巧。
(2)学会运用三角函数图像来正弦函数、余弦函数的有关性质,把数形结合的思想运用到问题求解上。
课时安排:(需上3课时)第一课时:正弦、余弦的图像 第二课时:正弦、余弦的图像和性质一 第三课时:正弦、余弦的图像和性质二 教学设计为第一课时
六、教学过程
一、复习引入:
1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点p(x,y)
p与原点的距离r(rxyx2y20)
r22p(x,y)yy则比值叫做的正弦 记作: sin
rr 比值xx叫做的余弦 记作: cos rr3.正弦线、余弦线:设任意角α的终边与单位圆相交于点p(x,y),过p作x轴的垂线,垂足为m,则有
sinyxmp,cosom rr向线段mp叫做角α的正弦线,有向线段om叫做角α的余弦线.
二、讲解新课:
1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.
(1)函数y=sinx的图象
第一步:在直角坐标系的x轴上任取一点o1,以o1为圆心作单位圆,从这个圆与x轴的交点a起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角0,6,,,„,2π的正弦线正弦线(等价于32“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.
根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈r的图象.把角x(xr)的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.(2)余弦函数y=cosx的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?
根据诱导公式cosxsin(x2),可以把正弦函数y=sinx的图象向左平移
单位即2得余弦函数y=cosx的图象.(课件第三页“平移曲线”)
-6-5-4-3-2-y1o-1y1-6-5-4-3-2--123456xy=sinxy=cosx23456x正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线. 思考:在作正弦函数的图象时,应抓住哪些关键点? 2.用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)((3,-1)(2,0)2,1)(,0)2余弦函数y=cosx x[0,2]的五个点关键是哪几个?(0,1)((2,1)
3,0)(,-1)(,0)22只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握. 优点是方便,缺点是精确度不高,熟练后尚可以
3、讲解范例: 例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],(2)y=-cosx ●探究2. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x-π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
● 探究3.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx,x∈〔0,2π〕的图象? 小结:这两个图像关于x轴对称。●探究4.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx,x∈〔0,2π〕的图象? 小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。
●探究5.
不用作图,你能判断函数y=sin(x3π/2)= sin[(x-3π/2)+2 π] =sin(x+π/2)=cosx这两个函数相等,图象重合。
例2 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
(1)sinx115;(2)cosx,(0x).2 2
2三、巩固与练习
数学必修四p34 练习
1、2
四、小 结:本节课学习了以下内容:
1.正弦、余弦曲线 几何画法和五点法 2.注意与诱导公式,三角函数线的知识的联系
五、作业:数学必修四p46页习题1.4a组
1、同步练习册当堂巩固1.2.3.4
七、教学设计反思
反思学习过程,对研究正弦函数,余弦函数的图像,性质,进行概括,深化认识。三角函数是一类特殊的周期函数,在研究三角函数时,既可以联系物理、生物、自然界中的周期现象,也可以从已学过的指数函数,对数函数、幂函数等得到启发,还要注意与锐角三角函数建立联系。
三角函数教学设计初中 三角函数教学设计论文篇十二
《锐角三角函数复习课》的教学设计
鸡东镇中学杨晓红
《锐角三角函数》是初四下册第二十八章内容,本章包括锐角三角函数的概念,以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。本章在中考中所占的比重虽不大,但属于比较好得分的部分。所以复习好本章的内容对于学生来说也很重要。我从六个方面说明我的教学设计:
一、教学设计说明;
二、教学分析;
三、教学目标;
四、教学策略;
五、教学过程:
六、教学反思。
一、教学设计说明
我校有适合本校学生发展的教学模式----学论评测模式,所以我在设计本节课时使用了这种模式,主要分为四个环节自主学习、合作学习、展示点评、反馈检测。与本节课有关的旧知识需要复习的我又增加了一个环节是知识回顾。自主学习是让学生先自己阅读教材,将本节课的知识点做个了解,简单的、基础的知识都放在这一环节,重在培养学习自主学习的能力,同时也培养学习认真阅读的能力;合作讨论是将本节课中难度比较大的问题通过小组讨论的形式来完成,小组内的成员通过合作、交流、探讨来解决问题。体现团队精神;展示交流环节是给学生机会来展示自我,以小组
为单位,全员参加,合理分配任务完成展示。重在培养学生各方面的能力,发挥学生的主体作用;最后检测学生本节课的学习情况。各环节的设计重在以学生为主体,突出学生的主体作用,另外培养学习的兴趣和能力,让学生在一种轻松愉快的学习氛围中学习知识。
二、教学分析
(一)教学内容分析
本章要复习的知识点有4个。
1、锐角三角函数的概念。
2、特殊锐角三角函数值。
3、解直角三角形。4锐角三角函数的应用
(二)学情分析
1、我所教的一所农村学校,学生基础不是很好。所在我在每次课的设计都以基础为主,注重知识的来源和过程。
2、学生书写过程有的写的不细致,逻辑性不强。
3、使用这种教学模式要求精讲,所以学生平时训练时题目都是精选,但题量不大,学生计算的速度有限。
三、教学目标
1、知识与技能:
(1).巩固三角函数的概念,巩固用直角三角形边之比来表示某个锐角的三角函数.(2).熟记30°,45°, 60°角的三角函数值.会计算含有特殊角的三角函数的值,会由一个特殊锐角的三角函数值,求出它的对应的角度.(3).掌握直角三角形的边角关系,会运用勾股定理,直
角三角形的两锐角互余及锐角三角函数解直角三角形.(4).会用解直角三角形的有关知识解决简单的实际问题.2、过程与方法:通过自学,观察、讨论、类比、归纳等方法学习知识,积累教学经验
3、情感态度与价值观:
在解决问题的过程中引发同学的学习需求,让学生在学习需求的驱动下主动参与学习的全过程,并让学生体验到学习是需要付出努力和劳动的。
教学重点:锐角三角函数的概念及特殊三角函数 教学难点:会用解直角三角形的有关知识解决简单实际问题。
四、教学策略
(一)、教学方法
本节课我使用了自学+研讨+展示的教学方法。课堂教学方法非常灵活,最重要的是体现出学生的主体地位,把课堂还给学生,充分调动学生的积极性,加大学生的思考量。给学习一个展示的平台,让学习通过自主学习、合作讨论、展示交流来发现问题、讨论问题、解决问题。发挥学习的团队精神。营造良好宽松的学习氛围。
(二)教学手段
本节课学生在多煤体教室上课,使用白板进行教学,学
生可以利用白板展示自己的答案,简单方便。省时得力。效果好。学生兴趣浓厚。
五、教学过程
1、自主学习
本环节主要是解决学习目标中的前三个目标的,设计8个问题,其中前三个是概念,后5个是在理解概念的基础上解决问题,问题设计的都比较基础,为了是巩固基础知识。
2、合作学习
本环节设计了4个问题。主要是解决实际问题,也就是直角三角形的应用。设计的内容比较广泛,为了培养学生运用知识解决实际问题的能力。学生通过讨论合作完成后归纳实际应用的几种图形。
4、展示点评
学生一共分为四组。小组都完成后,抽签决定展示题目。根据学生展示情况加分,小组长和老师对各组的展示进行评价。表扬优秀小组。
5、反馈检测
本环节设计了5道题,有填空和选择,重基础和易错题目的考查。学生检测后当堂对答案,记分,公布小组得分。
六教学反思
在本节课教学中我能够注重培养学生的兴趣和能力,能够以学生为主体,给学生多的空间和时间来讨论问题和展示问题,对学生回答的问题能够及时的肯定和纠正。学生能解决的问题能做到不讲,让学生真正通过自己的能力来学习问
题,不太理解的问题通过小组合作来解决,体会在解决问题的过程中与他人合作的重要性。我回忆在课堂教学过程中还有以下不足之处:在时间的分配上还不是最合理的,各环节展示的时间太紧。不是很从容。对于学生的评价也不是很到位,对于学生激励性的语言使用的不够,小组长的组织能力和带头作用还最大发挥。
改进方法
作为教师,要想真正上好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是学习的组织者和引导者,在课堂上只是一个配角。另外对小组长要多加培训。当一个小老师使用。能够带领全组学生都动起来,不让一个学生掉队。
三角函数教学设计初中 三角函数教学设计论文篇十三
第四章
三角函数
总 第1教时
4.1-1角的概念的推广(1)教学目的:
推广叫的概念,引入正角、负角、零角;象限角、坐标上的角的概念;终边相同角的表示方法。
让学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义,以及相应的表示方法。
从“射线绕其端点旋转而形成角”的过程,培养学生用运动变化的观点审视事物;通过与数(轴)的类比,理解“正角”“负角”“零角,让学生感受图形的对称美、运动美。教学重点:
理解并掌握正角、负角、零角、象限角的定义; 掌握总边相同角的表示方法及判定。
教学难点:把终边相同角用集合和符号语言正确的表示出来。过程:
一、提出课题:“三角函数”
回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广
回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
讲解:“旋转”形成角(p4)突出“旋转”
注意:“顶点”“始边”“终边” “始边”往往合于轴正半轴
“正角”与“负角”——这是由旋转的方向所决定的。记法:角或
可以简记成由于用“旋转”定义角之后,角的范围大大地扩大了。1(角有正负之分
如:(=210((=(150((=(660(2(角可以任意大
实例:体操动作:旋转2周(360(×2=720()3周(360(×3=1080()3(还有零角
一条射线,没有旋转
三、关于“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30(390((330(是第ⅰ象限角
300((60(是第ⅳ象限角
585(1180(是第ⅲ象限角
(2000(是第ⅱ象限角等
四、关于终边相同的角
1.观察:390(,(330(角,它们的终边都与30(角的终边相同 2.终边相同的角都可以表示成一个0(到360(的角与个周角的和
390(=30(+360((330(=30((360(30(=30(+0×360(1470(=30(+4×360((1770(=30((5×360(3.所有与(终边相同的角连同(在内可以构成一个集合即:任何一个与角(终边相同的角,都可以表示成角(与整数个周角的和 4.(p6例1)例1 在0°到360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.
(1)-120°;(2)640°;(3)-950°12′. 解:(1)-120°=240°-360°,所以与-120°角终边相同的角是240°角,它是第三象限角;(2)640°=280°+360°,所以与640°角终边相同的角是280°角,它是第四象限角;(3)-950°12′=129°48′-3×360°,所以与-950°12′角终边相同的角是129°48′,它是第二象限角.
(p5)
五、小结: 1(角的概念的推广,用“旋转”定义角
角的范围的扩大
2(“象限角”与“终边相同的角”
六、作业:
p7
练习
1、2、3、4
习题1.4
总
第2课时
4.1-2
角的概念的推广(2)教学目的:
进一步理解角的概念,能表示特殊位置(或给定区域内)的角的集合; 能进行角的集合之间的交与并运算; 讨论等分角所在象限问题。教学重点与难点:
角的集合之间的交与并运算; 判断等分角的象限。过程:
复习、作业讲评.新课: 例
一、(p6例2)
写出终边在y轴上的角的集合(用0°到360°的角表示).
解:在0°到360°范围内,终边在y轴上的角有两个,即90°,270°角(图4-4).因此,所有与90°角终边相同的角构成集合s1={β|β=90°+k·360°,k∈z}={β|β=90°+2k·180°,k∈z},而所有与270°角终边相同的角构成集合 s2={β|β=270°+k·360°,k∈z}
={β|β=90°+180°+2k·180°,k∈z} ={β|β=90°+(2k+1)180°,k∈z},于是,终边在y轴上的角的集合 s=s1∪s2 ={β|β=90°+2k·180°,k∈z}∪{β|β=90°+(2k+1)180°,k∈z} ={β|β=90°+180°的偶数倍}∪{β|β=90°+180°的奇数倍} ={β|β=90°+180°的整数倍}={β|β=90°+n·180°,n∈z}. 例
二、(p6例3)、写出与下列各角终边相同的角的集合s,并把s 中适合不等式-360o≤β
(1)60o
(2)-21o
(3)363o14ˊ 解:(1)s={β|β=60°+k·360°,k∈z}. s中适合-360°≤β<720°的元素是 60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.
(2)-21°不是0°到360°的角,但仍可用上述方法来构成与-21°角终边相同的角的集合,即
s={β|β=-21°+k·360°,k∈z}. s中适合-360°≤β<720°的元素是-21°+0×360°=-21°,-21°+1×360°=339°,-21°+2×360°=699°.
(3)s={β|β=363°14′+k·360°,k∈z}. s中适合-360°≤β<720°的元素是 363°14′-2×360°=-356°46′,363°14′-1×360°=3°14′,363°14′+0×360°=363°14′. 例
三、用集合表示:(1)第二象限的集合;(2)终边落在y轴右侧的角的集合。解:(1)因为在0o~360o范围内,第二象限角的范围为90o
(2)因为在-180o~180o范围内,y轴右侧的角的范围为-90o
(二)习题4.1.5(1)已知α是锐角,那么2α是
()(a)第一象限角.(b)第二象限角.(c)小于180o的角.(d)不大于直角的角.练习:课本第7页练习5,习题4.1.5(2)
作业:习题4.1.3(2)、(4)、(6)、(8), 4
总 第3教时
4.2-1弧度制(1)教学目的:
理解1弧度的角及弧度的定义,掌握弧度制与角度制互化,并能熟练的进行角度与弧度的换算;熟记一些的数角的弧度数。并进而建立角的集合与实数集一一对应关系的概念。
通过弧度制的学习,使学生认识到角度与弧度都是度量角的制度,二者虽单位不同,但却是相互联系、辩证统一的;在弧度制下角的加、减运算可以象十进制一样进行,而不需要进行角度制与十进制之间的转化,化简了六十进制给角的加减、运算带来的诸多不便,体现了弧度制的简洁美。
教学重点:使学生理解弧度制的意义,能正确地进行弧度与角度的换算。
教学难点:
1、弧度制的概念及其与角度的关系,2、角的集合与实数集一一对应关系。
过程:
一、回忆(复习)度量角的大小第一种单位制—角度制的定义。
二、提出课题:弧度制—另一种度量角的单位制,它的单位是rad 读作弧度
定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
如图:(aob=1rad,(aoc=2rad
周角=2(rad
正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0; 角(的弧度数的绝对值(为弧长,为半径)
用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)
用角度制和弧度制来度量任一非零角,单位不同,量数也不同。
三、角度制与弧度制的换算
抓住:360(=2(rad
∴180(=(rad
∴ 1(=
例一
把化成弧度
解:
∴
例二
把化成度
解:
注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;
2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略
如:3表示3rad sin(表示(rad角的正弦
3.一些特殊角的度数与弧度数的对应值应该记住(见课本p9表)
4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
任意角的集合实数集r
四、练习(p11 练习
1、2)
例三
用弧度制表示:1(终边在轴上的角的集合2(终边在轴上的角的集合3(终边在坐标轴上的角的集合解:1(终边在轴上的角的集合2(终边在轴上的角的集合3(终边在坐标轴上的角的集合五、小结:1.弧度制定义
2.与弧度制的互化
六、作业: 课本 p11
练习
3、4
p12习题4.2
2、3
总 第4教时
4.2-2弧度制(2)教学目的:
加深学生对弧度制的理解,理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活的在具体应用中运用弧度制解决具体的问题。
通过弧度制与角度制的比较使学生认识到映入弧度制的优越性,激发在学生的学习兴趣和求知欲望,培养良好的学习品质。
教学重点:弧度制下的弧长公式,扇形面积公式及其应用。教学难点:弧度制的简单应用。
1、过程:
一、复习:弧度制的定义,它与角度制互化的方法。
口答
二、由公式:
比相应的公式简单
弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积
例一(课本p10例三)利用弧度制证明扇形面积公式其中是扇形弧长,是圆的半径。
证:
如图:圆心角为1rad的扇形面积为:
弧长为的扇形圆心角为
∴
比较这与扇形面积公式
要简单
例二 直径为20cm的圆中,求下列各圆心所对的弧长
⑴
⑵
解:
⑴:
⑵:
∴
例三
如图,已知扇形的周长是6cm,该扇形 的中心角是1弧度,求该扇形的面积。解:设扇形的半径为r,弧长为,则有
∴ 扇形的面积 例四
计算
解:∵
∴
∴
例五
将下列各角化成0到的角加上的形式 ⑴
⑵
解:
例六
求图中公路弯道处弧ab的长(精确到1m)图中长度单位为:m
解: ∵
∴
三、练习:p11
6、7、8、9、10
四、作业: 课本 p11-12
p12-13
习题4.2
5—14
总 第5教时
4.3-1任意角的三角函数(定义)教学目的:
生掌握任意角的三角函数的定义,熟悉三角函数的定义域及确定方法; 理解(角与(=2k(+((k(z)的同名三角函数值相等的道理。
重点难点:三角函数的定义域及确定方法,终边相同角的同名三角函数值相等。过程:
一、提出课题:讲解定义:
设(是一个任意角,在(的终边上任取(异于原点的)一点p(x,y)则p与原点的距离(见图4-10)2.比值叫做(的正弦
记作:
比值叫做(的余弦
记作:
比值叫做(的正切
记作:
比值叫做(的余切
记作:
比值叫做(的正割
记作:
比值叫做(的余割
记作:
注意突出几个问题: ①角是“任意角”,当(=2k(+((k(z)时,(与(的同名三角函数值应该是相等的,即凡是终边相同的角的三角函数值相等。
②实际上,如果终边在坐标轴上,上述定义同样适用。(下面有例子说明)
③三角函数是以“比值”为函数值的函数
④,而x,y的正负是随象限的变化而不同,故三角函数的符号应由象限确定(今后将专题研究)
⑤定义域:
二、例题:
例一 已知(的终边经过点p(2,(3),求(的六个三角函数值
解:
∴sin(=(cos(=
tan(=(cot(=(sec(=
csc(=(例二
求下列各角的六个三角函数值
⑴ 0
⑵(⑶ ⑷
解:⑴
⑵ ⑶的解答见p16-17
⑷ 当(=时
∴sin=1
cos=0
tan不存在cot=0
sec不存在csc=1 例三
求函数的值域
解: 定义域:cosx(0 ∴x的终边不在x轴上
又∵tanx(0 ∴x的终边不在y轴上
∴当x是第ⅰ象限角时,cosx=|cosx| tanx=|tanx| ∴y=2
„„„„ⅱ„„„„,|cosx|=(cosx |tanx|=(tanx ∴y=(2
„„„„ⅲⅳ„„„,|cosx|=(cosx |tanx|=tanx ∴y=0 例四
⑴ 已知角(的终边经过p(4,(3),求2sin(+cos(的值
⑵已知角(的终边经过p(4a,(3a),(a(0)求2sin(+cos(的值
解:⑴由定义 :
sin(=(cos(= ∴2sin(+cos(=(⑵若
则sin(=(cos(= ∴2sin(+cos(=(若
则sin(=
cos(=(∴2sin(+cos(=
三、小结:定义及有关注意内容
四、作业: 课本 p19 练习1
p20习题4.3
总 第6教时 4.3-2三角函数线
教学目的:
理解有向线段的概念、正弦线、余弦线、正(余)切线。要求学生掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
过程:
一、复习三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”
二、提出课题:从几何的观点来揭示三角函数的定义: 用单位圆中的线段表示三角函数值
三、新授: 介绍(定义)“单位圆”—圆心在原点o,半径等于单位长度的圆 作图:(图4-12)
设任意角(的顶点在原点,始边与轴的非负半轴重合,角(的终边也与单位圆交于p,坐标轴正半轴分别与单位圆交于a、b两点
过p(x,y)作pm(x轴于m,过点a(1,0)作单位圆切线,与(角的终边或其反向延长线交于t,过点b(0,1)作单位圆的切线,与(角的终边或其反向延长线交于s 简单介绍“向量”(带有“方向”的量—用正负号表示)“有向线段”(带有方向的线段)
方向可取与坐标轴方向相同,长度用绝对值表示。例:有向线段om,op
长度分别为
当om=x时
若
om看作与x轴同向
om具有正值x
若
om看作与x轴反向
om具有负值x
有向线段mp,om,at,bs分别称作
(角的正弦线,余弦线,正切线,余切线
四、例题:
例一.利用三角函数线比较下列各组数的大小: 1(与
2(tan与tan
3(cot与cot 解:如图可知:,tan tan cot cot 例二
利用单位圆寻找适合下列条件的0(到360(的角 1(sin(≥
2(tan(解: 1(2(30(≤(≤150(30((90(或210((270(例
三、求证:若时,则sin(1sin(2 证明:
分别作(1,(2的正弦线x的终边不在x轴上
sin(1=m1p1
sin(2=m2p2 ∵
∴m1p1 m2p2
即sin(1sin(2
五、小结:单位圆,有向线段,三角函数线
六、作业: 课本 p15
练习
p20习题4.3
补充:解不等式:()
1(sinx≥
2(tanx
3(sin2x≤
三角函数教学设计初中 三角函数教学设计论文篇十四
1.(2010·天津高考理科·t7)在△abc中,内角a,b,c的对边分别是a,b,c,若a2b2,sincb,则a=()
(a)300(b)600(c)1200(d)1500
2.(2010·北京高考文科·t7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构
方形所组成,该八边形的面积为()
(a)2sin2cos2;
(b)sin
3(c)3sin
1(d)2sincos1
3.(2010·湖南高考理科·t4)在△abc中,角a,b,c所对的边长分别为a,b,c,若∠c=120
°,c,则()
a、a>bb、a
4.(2010·北京高考理科·t10)在△abc中,若b = 1,c则a=。
5.(2010·广东高考理科·t11)已知a,b,c分别是△abc的三个内角a,b,c所对的边,若
则sinc=.6.(2010·山东高考理科·t15)在abc中,角a,b,c所对的边分别为a,b,2,3成的正c,若ab
2,sinbcosba的大小为.
7.(2010·江苏高考·t13)在锐角三角形abc中,角a、b、c的对边分别为a、b、c,若b
aatanctanc的值是_________。6cosc,则btanatanb
8.(2010·辽宁高考文科·t17)在△abc中,a,b,c分别为内角a,b,c的对边,且2asina=(2b+c)sinb+(2c+b)sinc.(ⅰ)求a的大小;
(ⅱ)若sinb +sinc=1,试判断△abc的形状.9.(2010·浙江高考文科·t18)在△abc中,角a,b,c所对的边分别为
a,b,c,设s为△abc的面积,满足s
(ⅰ)求角c的大小; 2(ab2c2)。
4(ⅱ)求sinasinb的最大值。
10.(2010·辽宁高考理科·t17)在△abc中,a, b, c分别为内角a, b, c的对边,且2asina(2ac)sinb(2cb)sinc.(ⅰ)求a的大小;
(ⅱ)求sinbsinc的最大值.11.(2010·浙江高考理科·t18)在△abc中,角a、b、c所对的边分别为a,b,c,1已知cos2c
4(i)求sinc的值;
(ⅱ)当a=2,2sina=sinc时,求b及c的长.
一、选择题
1.(2011·浙江高考文科·t5)在abc中,角a,b,c所对的边分别为a,b,c.若acosabsinb,则sinacosacos2b(a)-11(b)(c)-1(d)1 222.(2011·安徽高考理科·t14)已知abc 的一个内角为120o,并且三边长
构成公差为4的等差数列,则abc的面积为_______________
3.(2011·福建卷理科·t14)如图,△abc中,ab=ac=2,bc=d 在bc边上,∠adc=45°,则ad的长度等于______.4.(2011·福建卷文科·t14)若△abc的面积为,bc=2,c=60,则边ab的长度等于_____________.5.(2011·新课标全国高考理科·t16)在v
abc中,b60,acab2bc的最大值为6.(2011·新课标全国文科·t15)△abc中,b=120°,ac=7,ab=5,则△
abc的面积为_________
7.(2011·北京高考理科·t9)在abc中,若b5,b
sina;a4,tana2,则
8.(2011·北京高考文科·t9)在abc中,若b5,b1,sina,则43a9.(2011·安徽高考文科·t16)在abc中,a,b,c分别为内角a,b,c所对的边长,12cos(bc)0,求边bc上的高
10.(2011·辽宁高考文科·t17)(本小题满分12分)△abc的三个内角a,b,c所对的边分别为a、b、c,asinasinbbcos2a2a.
(i)求b;(ii)若c2=b
2a2,求b. a
cosa-2cosc2c-a.=cosbb11.(2011·山东高考理科·t17)(本小题满分12分)在abc中,内角a,b,c的对边分别为a,b,c.已知
(ⅰ)求sinc1的值;(ⅱ)若cosb=,b=2, 求△
4cosa-2cosc2c-a.=cosbb12.(2011·山东高考文科·t17)(本小题满分12分)在△abc中,内角a,b,c的对边分别为a,b,c.已知
sinc的值; sina
1(ⅱ)若cosb=,abc的周长为5,求b的长.4(ⅰ)求
13.(2011·湖南高考理科·t17)(12分)在abc中,角a,b,c所对的边分别为a,b,c,且满足csina=acosc.(1)求角c的大小;
(2)求sinacos(b
4)的最大值,并求取得最大值时角a,b的大小.14.(2011·陕西高考理科·t18)(本小题满分12分)
叙述并证明余弦定理.
【思路点拨】本题是课本公式、定理、性质的推导,这是高考考查的常规方向和考点,引导考生回归课本,重视基础知识学习和巩固.
15.(2011·天津高考文科·t16)在△abc中,内角a,b,c的对边分别为a,b,c,已知b=c,2b=.(ⅰ)求cosa的值;(ⅱ)cos(2a)的值 4
16.(2011·浙江高考理科·t18)(本题满分14分)在abc中,角a,b,c所对的边分别为a,b,c.1已知sinasincpsinbpr,且acb2.4
5(ⅰ)当p,b1时,求a,c的值; 4
(ⅱ)若角b为锐角,求p的取值范围;

一键复制