总结是对某一段时间内的学习、工作、生活表现进行概括的重要文书。写总结时要注意客观、准确、清晰地表达自己的观点和想法。总结范文可以给我们提供一些思路和观点,帮助我们更好地组织和编写自己的总结。
一年级数学知识点总结上册篇一
2、初步尝试选择恰当的方法进行5以内的加法口算。
3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。有几辆车(初步认识加法的交换律)知识点:
1、初步感知从不同的观察角度出发,会列出不同的算式,从而形象直观的说明两个数相加,交换加数位置,得数不变。
2、鼓励学生根据图意提出问题。解决问题时,可以出现两个不同的算式,并比较两个算式的异同。
摘果子(减法的认识)
知识点:
1、会读写减法算式,能说出减号的意义,理解减法的计算方法。2、能正确理解图意,并根据图意写出减法算式,从而学会解决简单的数学问题,感悟从一个数里去掉一部分求另一部分用减法计算。
小猫吃鱼(得数是0的减法)知识点:
1、进一步体会减法含义,理解得数是“0”的减法算式的意义。2、提高5以内数减法的计算能力。3、会把加法算式转化减法算式。猜数游戏(6,7的加减法)知识点:
1、学会“6”和“7”的加减法,感知并了解加减法之间的相互联系。2、根据图意能列出“一加一减”两道算式。
3、正确口算“6”和“7”的加减法,并能表达算式的含义。跳绳(8,9的加减法)知识点:
1、在具体情境中有序地写出8、9的不同的加减法算式。体会加减法之间的联系。2、正确口算“8”和“9”的加减法。
可爱的企鹅(8,9加减法的综合练习)知识点:
1、在理解图意的基础上分析数量关系并提出数学问题,正确选择计算方法解决问题。2、认识“大括号”,理解图中“大括号”和“问号”表示的含义。
3、根据图中数量关系,联系加减法含义,能正确列式,学会“求整体”时用加法解决,“求部分”时用减法解决。
分苹果(10的加减法)知识点:
1、从实际问题抽象并整理出10的加法和相应的减法。
2、正确熟练地口算10的加减法
3、本课教学10的组成和分解虽然不再作为10的加减法的逻辑起点,但它仍是熟练地口算10的加减法的有效手段。操场上(解决减法问题)知识点:
3、在具体的问题情境中引导学生体验谁比谁少,谁比谁多的相对性,意思是一样的,可以用同一道算式来解决。
乘车(连加、连减与加减混合运算)知识点:
知识点:
1、能正确数出数量是10以内物体的个数。
2、巩固基数和序数的区别,能给事物正确排序。
3、正确理解图意,能提出数学问题,并选择相应的方法解决问题。
各课知识点:
整理房间(分类的含义和方法)
知识点:
1、使学生经历分类的过程,学会按一定标准或自定标准进行分类。
2、让学生懂得把物体按一定的标准放在一起就叫分类。
3、初步养成有条理地整理事物的习惯;在分类的活动中,培养学生观察力、判断力,动手操作能力。
整理书包(用不同标准进行分类)知识点:
1、让学生经历整理分类的过程,体验整理分类的必要性。
2、让学生自主选择某种标准对事物进行比较、分类活动,体验分类结果在不同标准下的多样性。让学生懂得根据不同的分类标准可以有不同的分类结果。五位置与顺序各课知识点:
前后(前后的位置关系)知识点:
1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。
2、鹿在最前面,谁在它的后面?这个答案不唯一,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。
3、注意让学生会用前、后等词语描述物体的相对位置。上下(上下的位置关系)知识点:
1、在具体的情境中理解“上下”的相对性。
2、能用语言表达实际情境中物体的“上下”位置关系。
左右(左右的位置关系)知识点:
1、能用语言描述物体的左右位置关系。
2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。教室(前后、上下、左右综合应用)
知识点:
综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动
六认识物体
(一)各课知识点:
物体分类(立体图形的认识)知识点:
1、对几何体有一定的感性认识,直观辨别物体的四种形状及其名称。
2、能对简单的几何图形进行分类。在具体的分类活动中,知道可以选择很多不同的标准对物体进行分类,教材只呈现按大小和形状的标准分,是因为它们都是几何研究的对象。
你说我摆(几何体认识的练习)
知识点:
这个数学活动,对“说”的和“摆”的都有一定要求:说的一方要清晰、有条理地描述眼前几何体的相对位置与顺序;摆的一方则要根据听到的信息,一边在头脑中建构空间图形的表象,一边用相应几何体模型把它摆出来。双方还要就摆的与说的是否一致进行确定。
七加减法(二)(一)各课知识点:
捆小棒(11~20各数的认识)知识点:
1、计数器表示数的方法是摆小棒表示数的方法的简化和抽象:
计数器上的数的“十位”与“捆”对应,“个位”与“根”对应。这次抽象形成了极为重要的位值概念。
2、认识一个新的计数单位“十”,知道“从右边起,第一位是个位,第二位是十位。”3、在摆一摆、数一数、捆一捆活动中,认学生认、读、写11~20各数。掌握20以内数的顺序、大小以及数的组合。
搭积木(十几加(减)几的加减法)知识点:
1、用形象的积木,帮助学生认识不进位加法和不退位减法。(即在原有的基础上增加为加法,减少为减法。)
2、学习20以内不进位加法和不退位减法,计算方法都是先在个位上加或减,然后再与十位上相加或相减。
3、在计算中找规律,理解加法中加号两边的数交换位置,相加结果不变。减法中,被减数不变,减数越大,所得的差越小。
有几瓶牛奶(9加几的进位加法)知识点:
1、通过问题的解决,让学生学会“9+?”的进位加法。
2、理解凑十法的简便性。(把与9相加的另一加数分解成1和几,使9和1凑成10,再用10加上剩余的数,就是“9+?”的凑十法。
3、直接对进位加法的算式进行计算,以作为巩固练习。有几棵树(8加几的进位加法)知识点:
1、引导学生利用已有的“9+?”的经验探索“8+?”的计算方法。第一种方法:把8凑10,分解另一个加数。第二种方法:把8分解,将另一个加数凑成10。2、进一步理解“凑十法”。3、正确熟练地口算8加几。
买铅笔(十几减几的退位减法(一))知识点:
1、学会“十几减九”的退位减法。
2、让学生探索并学会“十几减八”的退位减法及相关数学问题。
3、体会计算方法的多样性。
第一种方法:个位上的数不够减9或8,从十位退一在个位加十再减。
第二种方法:将十几分解10和几,用10减9或8,再用结果加上分得的另一个数。
第三种方法:逆向思维,做减法想加法,9(8)加几等于十几,十几减9(8)就等于几。第四种方法:十几减9可以想成用个位数加1。(十几减9就用几加1)
以上几种方法不是要求每一位学生全部掌握,但是要求学生明确退位减法的算理。跳伞表演(十几减内的退位减法(二))知识点:
1、正确计算十几减7、减6等数的减法。(减5、4、3、2等数的减法在教学实际情况中进行穿插安排。)2、进一步感知解题策略的多样性。美丽的田园(解决问题)知识点:
1、学会用数学知识解决简单的实际问题。2、巩固20以内的进位加法和退位减法。
3、使学生能根据一个加法算式写出两道减法算式。4、多角度的认识一个数,建立数感。
八认识钟表各课知识点:
小明的一天(认识整时和半时)知识点:
1、初步认识钟面,知道钟面的数字以及长短针的作用,知道指针转动的方向。2、正确认读整时、半点。并说出时针和分针在整时和半点的指向特点。小芳的上午(估计接近整时的时间)知识点:
1、进一步巩固认读整时、半时。
2、估计整时应先看时针所指的位置,再看分针是否在数字12的左右。九统计
各课知识点:
最喜欢的水果(象形统计图)知识点:
1、初步体验数据的收集、整理过程,认识统计图和简单的统计表,能根据图表回答一些简单的问题。
2、统计活动的重心不应该放在如何制作统计图表上,可以事先为学生准备统计图表让学生填补完整,着重对填补完整的统计图表进行分析、解释和应用。这样才能体会统计活动的意义和必要性。迎新年知识点:
1、学会独立观察与思考,能根据图意提出问题、解决问题。
2、通过活动复习统计图、表的有关知识。复习长方体、正方体、圆柱体和球四种几何形体。
一年级数学知识点总结上册篇二
1、正确熟练地数出数量在20以内的物体的个数。
2、会区分几个和第几个,掌握数的顺序和大小。
3、掌握10以内各数的组成,会正确读、写0――20各数。
4、能说出个位、十位数位名称,识别各数位上数字的意义,初步了解进制。
5、认识符号“=”“”“”的含义,会使用这些符号表示数的大小。
数的运算
1、初步知道加、减法的含义和加、减法算式中各部分的名称,初步知道加法和减法的关系。
2、比较熟练地计算(口算)一位数的加法和10以内的减法。
3、比较熟练地计算(口算)20以内的进位加法。
4、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
常见的量
1、初步认识钟表,会认识整时和半时。
2、培养学生初步建立时间观念,从小养成珍惜时间和遵守时间的良好习惯。
一年级数学知识点总结上册篇三
一、1--5的认识。
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序。
从前往后数:1、2、3、4、5.
从后往前数:5、4、3、2、1.
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小。
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“”表示,即32,读作3大于2。前面的数小于后面的数,用“”表示,即34,读作3小于4。
2、填“”或“”时,开口对大数,尖角对小数。
三、第几。
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合。
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法。
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法。
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0。
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零。
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:0+8=89-0=94-4=0。
第四单元。
认识图形。
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
如图:
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
一年级数学知识点总结上册篇四
1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。
2、寻找图形的变化规律,可从形状、颜色、个数的增减等方面去思考。
3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。
4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。
5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。
6、大面额的`人民币换成小面额的人民币,用数得组成来思考,想打面额的人民币里面有几个小面额的人民币的数。
7、最小的两位数是10,地两位数是99。
8、一个两位数,位是十位,一个三位数,位是百位。
9、求一个加数,用和减另一个加数。求被减数,用差加减数。
10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。
11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。
12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。
13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。
14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。
15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。
一年级数学知识点总结上册篇五
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无_。
奇偶性。
定义。
一般地,对于函数f(x)。
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
基础是关键,课本是首选。
首先,新高一同学要明确的是:高一数学是高中数学的重点基础。刚进入高一,有些学生还不是很适应,如果直接学习高考技巧仿佛是“没学好走就想跑”。任何的技巧都是建立在牢牢的基础知识之上,因此建议高一的学生多抓基础,多看课本。
在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。
高一数学的知识掌握较多,高一试题约占高考得分的70%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充,所以进入高中后,要尽快适应新环境,上课认真听,多做笔记,一定会学好数学。
因此,新高一同学应该在熟记概念的基础上,多做练习,稳扎稳打,只有这样,才能学好数学。
一、数学预习。
预习是学好数学的必要前提,可谓是“火烧赤壁”所需“东风”.总的来说,预习可以分为以下2步。
1.预习即将学习的章节的课本知识。在预习课本的过程中,要将课本中的定义、定理记熟,做到活学活用。有是要仔细做课本上的例题以及课后练习,这些基础性的东西往往是最重要的。
2.自觉完成自学稿。自学稿是新课改以来欢迎的学习方式!首先应将自学稿上的《预习检测》部分写完,然后想后看题。在刚开始,可能会有一些不会做,记住不要苦心去钻研,那样往往会事倍功半!
二、数学听讲。
听讲是学好数学的重要环节。可以这么说,不听讲,就不会有好成绩。
1.在上课时,认真听老师讲课,积极发言。在遇到不懂的问题时,做上标记,课后及时的向老师请教!
2.记录往往是一个细小的环节。注意老师重复的语句,以及写在黑板上的大量文字(数学老师一般不多写字),及时地用一个小本记录下来,这样日积月累,会形成一个知识小册。
一年级数学知识点总结上册篇六
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
1、第一单元《生活中的数》。基于儿童数数的经验,结合具体的情景认识10以内的数的意义,会认、会读、会写0——10的数,会用它们表示物体的个数或事物的顺序,初步体会基数与序数的含义,初步感受“数”与生活的密切联系,初步体验学习数学的乐趣,初步形成良好的学习习惯。
2、第二单元《比较》。通过比较具体数量多少的数学活动,获得对“、、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践操作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。
3、第三单元《加减法〈一〉》。经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。
4、第七单元《加减法〈二〉》。经历表示11——20的数的具体操作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。
5、第八单元《认识钟表》。结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用“快几时了”或“刚过几时”等词语描述时间,经历简单而熟悉的操作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
一年级数学知识点总结上册篇七
1.位置:所在或所占的地方,有上下、前后、左右之分。
上:位置方位名词,例:汽车在马路的上面。
下:位置方位名词,例:船在桥的下面。
前:位置方位名词,例:张三在李四的前排,那么可以说张三在李四的前面。
后:位置方位名词,例:李四在张三的后排,那么可以说李四在张三的后面。
2.退位减:减法运算中必须向高位借位的减法运算。
20以内的数字之间的退位减法,例:12-9=3.
3.图形的拼组。
4.数一数:
5.读数:24读作“二十四”;169读作“一百六十九”。
6.比较数的大小:先比较高数位的数学,再按照数位的高低依次比较。
7.100以内数的认识:100读作“一百”,等于10个10相加;99读作“九十九”,等于100减去1.
8.认识人民币。
一年级数学知识点总结上册篇八
1、数数:根据物体的个数,可以用11—20各数来表示。
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。
如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法。
(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题。
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
一、十位加、减十位,个位加、减个位。
1、不进位的加法20+30=5067+2=6968+30=98。
二、进位加法(凑十法)。
1、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)。
2、20以内进位加:凑十法:8+72=15十位加1,个位减补数(2+8=10,2是8的补数)。
3、100以内进位加362+8=44提炼方法:个位用弧线连上,十位加1,个位减补数。(方法和20以内一样)。
三、退位减法。
1、20以内退位减:破十法:161-9=7个位加补数。
2、100以内退位减:361-9=27提炼方法:个位用弧线连上,十位减1,个位加补数。
1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。
2、学会观察,能在生活中找出基本的形状,会举例。
3、能区分出面和体的关系,体会“面在体上”。
4、能找出一组图形的规律。
5、能在复杂的图案中找出基本的图形。
动手做(一)。
学生能自己动手折一折、剪一剪,剪拼出喜欢的图案。
通过折纸、剪拼等活动进一步认识平面图形。
通过折纸对简单的图形进行分解和拼补。
动手做(二)。
了解七巧板的组成。通过用七巧板拼图的活动,进一步熟悉学过的平面图形。
初步认识平行四边形,只让学生直观认识,知道形状和名称即可。
动手做(三)。
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会。
1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。
一年级数学知识点总结上册篇九
2、立体图形:长方体、正方体、圆柱、球。
二、图形的拼组。
1、两个完全一样的三角形可拼成一个平行四边形;两个完全一样的三角形既可以拼成一个平行四边形,也可以拼成一个长方形,还可以拼成一个大三角形。
2、拼成一个大正方形至少需要4个小正方形,拼成一个大正方体至少需要8个小正方体。
3、两个长方形能拼成一个大的长方形。(两个特殊的长方形能拼成一个大正方形),4个长方体能拼成一个大的长方体。
数学学习方法技巧。
1、巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。另外,计算与速算是各种后续问题学习的基础。学好数学,首先就要过计算这关。
2、认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
3、学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。在数学课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
4、数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使数学学习更加系统。

一键复制