编写教案能够帮助教师理清教学内容的逻辑关系,保证教学进程的科学性和系统性。在教案中要注重培养学生的创新思维和实践能力。这些教案范例注重了学生的主动参与和思维能力的培养。
六年级数学上册倒数的认识教案篇一
使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
:教学光盘。
:自学课本p50:
什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
0有倒数吗?为什么?
出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
你能模仿着再举几个例子吗?
学生回答,教师板书。
观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
观察上面互为倒数的'两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×()=1,再得出结果。
六年级数学上册倒数的认识教案篇二
通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
理解倒数的意义,学会求倒数的方法。
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
多媒体课件。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。
师:谁还能说出这样的数?(课件出示)。
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)。
理解倒数的意义。
掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
探究讨论,理解倒数的意义。
(课件出示教材例1的四个算式。)。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)。
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
深化理解。
乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)。
互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)。
想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
运用概念。
讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)。
小结:求一个数(0除外)的倒数,只要把这个数的`分子、分母调换位置。)。
怎样求小数和带分数的倒数呢?(课件演示,学生观察。)。
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
填一填。(出示课件)。
乘积是()的()个数()倒数。
a和b互为倒数,那a的倒数是(),b的倒数是()。
只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
一个真分数的倒数一定是()。
判断题。(演示课件)。
5/3是倒数。()。
因为3/4×4/3=,所以4/3是倒数。()。
真分数的倒数大于1,假分数的倒数小于1。()。
因为1/4+3/4=1,所以1/4和/4互为倒数。()。
说一说。(课本的第3题)。
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。
2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
六年级数学上册倒数的认识教案篇三
1、使学生理解倒数的意义,掌握求倒数的方法。
2、提高学生观察、比较、、概括的能力。
3、感悟“变通”的数学思想。
:倒数的意义与求法。
:理解“互为”的意义,明确倒数只是表示两个数间的关系。
(生:上下两部分调换了位置,变成了另一个字)。
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
1、引导质疑。
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……。
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)。
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。
3、揭示倒数的意义。
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数。
你认为哪个词非常重要?你是如何理解“互为”的?生回答。
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。
强调:(1)乘积必须是1。
(2)只能是两个数。
(3)倒数是表示两个数的关系,它不是一个数。
4、小组探究求一个倒数的方法。
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
1、判断题。
2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。
师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)。
师:是不是所有真分数的倒数都是假分数?
(出示结论:所有真分数的倒数都是假分数)。
师:第二组(这组分数都是假分数,它们的倒数都是真分数。)。
师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)。
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)。
所以——(卡片结论:大于1的假分数的倒数都是真分数。)。
师:第3组呢?(这组分数的倒数都是整数。)。
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)。
师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)。
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的`倒数都是分数单位)。
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
师:你能用“我学会了--”来描述今天学到的知识吗?
生:。.。.。.。
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
六年级数学上册倒数的认识教案篇四
教科书第28~29页例1、“做一做”及相关内容。
1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2.使学生体验找一个数的倒数的方法,会求一个数的倒数。
3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
理解倒数的意义;求一个数的倒数。
理解“互为倒数”的含义。
教学课件、写算式的卡片。
具体内容修订。
基本训练,强化巩固。(3分钟)。
1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2.学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。(2分钟)。
请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。(1分钟)。
通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。(6分钟)。
1、观察这些算式,如果将它们分成两类,怎样分?
2.通过观察发现算式的特点。
展示成果,体验成功。(4分钟)。
让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。(8分钟)。
1、学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2、认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3.引导学生思考:互为倒数的两个数有什么特点?
4.探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书。
六年级数学上册倒数的认识教案篇五
p27倒数的认识,练习六全部习题。
这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。
提一个开放性的问题:看到这个课题,你们想到了什么?
(学生各抒己见)。
师生共同确定本节课的目标——研究倒数的意义、方法和用处。
研究倒数的意义。
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
学生自主举例,推敲方法:
师:下面,请大家各自举例加以说明。
学生先独立思考,再交流。
(a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)。
(b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)。
(c、以“带分数”为例;带分数的倒数是真分数。)。
(d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。
(e、以“整数”为例;整数相当于分母是1的'假分数)。
学生举例的过程同时将如何寻找倒数的方法也融入其中。
讨论“0”、“1”的情况:
1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)。
总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。
完成“练一练”。
学生独立完成后,集体订正。重点问:“8”的倒数是几?
练习六5(判断)。
补充判断:
a、a是自然数,a的倒数是1/a。
六年级数学上册倒数的认识教案篇六
通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
理解倒数的意义,学会求倒数的方法。
发现倒数的一些特征。
课件。
教学过程。
特色设计。
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
找找下面文字的构成规律。
呆———杏土———干吞———吴。
按照上面的规律填数。
——()——()——()。
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数。
探究讨论,理解倒数的意义。
课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的'两个分数叫做“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
你是怎样理解互为倒数的呢?能举例吗?
深化理解。
乘积是1的两个数存在着怎样的倒数关系呢?
互为倒数的两个数有什么特点?
想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
运用概念。
讨论求一个数的倒数的方法。
出示例2:写出其中3/5、7/2两个分数的倒数。
学生试做讨论后,教师将过程。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。
怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
完成教材的“做一做”
完成教材练习六的第1-5题。
今天我们学习了有关倒数的哪些新知识?
六年级数学上册倒数的认识教案篇七
倒数的认识的教学,主要是通过观察,分析,对比,概括的方法让学生讨论,举例,交流,真正理解什么是倒数,怎样求倒数.待新知识弄清之后,根据本课内容的特点适当插入一些内容,也就是在教学过程中让同桌同学互相多提问,师生之间多提问,互相解疑,列举出一定范围各种各样的数,一方面看有没有倒数;另一方面看一看有倒数怎样求,这样可以激发学生探索新知识的兴趣,使课堂气氛活跃,在愉快之中达到理解,掌握之目的.
教学内容:教材23页的内容以及练习六1至6题.
六年级数学上册倒数的认识教案篇八
倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
理解倒数的意义,掌握求倒数的方法。
熟练写出一个数的倒数。
1.交流。
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
对数游戏。
1.学习倒数的意义。
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4。
师:7是15的7/15;生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
六年级数学上册倒数的认识教案篇九
使学生理解倒数的意义,掌握求倒数的方法。
提高学生观察、比较、、概括的能力。
感悟“变通”的数学思想。
:倒数的意义与求法。
:理解“互为”的意义,明确倒数只是表示两个数间的关系。
(生:上下两部分调换了位置,变成了另一个字)。
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
引导质疑。
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……。
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)。
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的'分子分母颠倒就能写出另一个数。
揭示倒数的意义。
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数。
你认为哪个词非常重要?你是如何理解“互为”的?生回答。
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。
强调:(1)乘积必须是1。
只能是两个数。
倒数是表示两个数的关系,它不是一个数。
小组探究求一个倒数的方法。
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
内化提高。
反思,发展能力。
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

一键复制