总结是对自己经历的一种记录,也是对他人的一种分享。完美的总结应该在表达上具有逻辑性和连贯性,让读者能够深入理解。接下来,小编为大家整理了一些总结的范文,希望能对大家有所帮助。
数学的小故事30字篇一
从前,有一个老汉,临死前对三个儿子说:“我不行了。咱们家只有十七棵树,我死后,老大分二分之一,老二分三分之一,老三分九分之一,并且,每个树都不能砍倒。”说完这些,老汉死了。
兄弟三人看到死去的父亲,他们伤心极了,于是,三人商量着安葬了父亲,他们并且按照父亲的叮嘱,商量着分树,按老人的遗嘱分树,怎么分也分不开,兄弟三个一筹莫展,谁也没有办法。
不过,正在他们一筹莫展的时候,一个聪明的小朋友从这里路过,轻轻松松,就将这个问题解决了,让我们一起看看他的解决方法吧。
小朋友和兄弟三个人说:“要想用现有的树,将其按照你们父亲的叮嘱分是分不开的,所以,我们需要借助下外人的树”,听到这里,兄弟三人还是很迷茫,于是,小朋友就给他们继续解答问题。
解答方法:
把邻居的树借来一棵加上来分,17+1=18(棵)老大:18的二分之一是9(棵)老二:18的三分之一是6(棵)老三:18的九分之一是2(棵)9+6+2正好17棵,最后把邻居家的树还给邻居。
数学的小故事30字篇二
丘成桐博士为国际数学家,美国科学院院士,中国科学院外籍院士。1982年由于他在几何方面的杰出工作,获得了菲尔茨奖(被称之为数学的诺贝尔奖)。1994年,获得了瑞典皇家学员颁发的国际上的克雷福德奖(clifford)。1997年获美国国家科学奖。
丘成桐博士在科研方面做出了杰出的成就,赢得了许多荣誉。更为可贵的是,他十分关注中国基础研究的发展,并将其同自己的科研发展紧密联系在一起,多年来,一直运用他在国际上的影响和活动能力,协同各方面力量,为中国数学的发展作了大量的工作。
2、祖冲之。
法国巴黎的「发现宫」科学博物馆中友祖冲之的大名与他所发现的圆周率值并列。他曾经算出月球绕地球一周为时27.21223日,与现代公认的27.21222日,在那个时代能有那麼伟大的成就,实在让人佩服,难怪西方科学家把月球上许多「火山口」中的一个命名为「祖冲之」。
而即使在社会主义共产国家「老大哥」苏俄,在莫斯科国立大学礼堂廊壁上,用彩色大理石镶嵌的世界各国的科学家肖像中,也有中国的祖冲之和李时珍,祖氏有那麼杰出的表现,我们不能不对他稍有认识。
3、陶哲轩。
1975年7月15日,陶哲轩出生在澳大利亚阿得雷德,是家中的长子。现任教于美国加州大学洛杉矶分校(ucla)数学系的华裔数学家,澳洲惟一荣获数学荣誉“菲尔茨奖”的澳籍华人数学教授,继1982年的丘成桐之后获此殊荣的第二位华人。其于1996年获普林斯顿大学博士学位后任教于ucla,24岁时便被ucla聘为正教授。
数学的小故事30字篇三
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,其底盘菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
数学的小故事30字篇四
罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,还把印度人使用“0”的方法向大家做了介绍。这件事被当时的罗马教皇知道了。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,于是下令,把这位学者抓了起来,用夹子把他的十个手指头紧紧夹住,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,但是罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,做出了很多数学上的贡献。后来,“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
数学的小故事30字篇五
答案是:先使用五升的水壶装满水,然后倒到六升的水壶里面,这个时候,再将五升的水倒一些在六升的水壶里面,六升的水壶就满了,这个时候,五升的水壶里还有四升的水。然后把六升的水壶的水倒掉,把五升的水倒在六升的水壶里,这个时候,六升的水壶就只有四升的水了,然后将五升的水壶装满,装到六升壶里去,然后六升的壶满了,这个时候,五升的水壶里就剩下我们要的三升水了。
答案是:先把三只放到一齐来称,然后拿出一只,称量之后算差即可。
数学的小故事30字篇六
华罗庚上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。
数学的小故事30字篇七
祖冲之(公元429-500),字文远,是我国古代南北朝时代南朝杰出的科学家,原籍是范阳郡遒县(今河北莱源县),因战乱,他的祖先迁居江南。公元429年,祖冲之诞生在南方宋朝一个士大夫的家庭。这家有几代研究历法,祖父掌管土木建筑,也懂得一些科学技术,所以祖冲之从小就有机会接触家传的科学知识,他少年时代就开始钻研古代的经典。思想机敏。勇于创新,勤奋地学习,对各种事物敢于大胆设想,勇于创新,并且勤于实践。他搜集和阅读了大量有关天文、数学等方面的书籍与文献资料,并经常进行精密的测量和仔细的推算。就象自己说的那样;“亲量圭尺,躬察仪漏,目尽毫厘,心军筹策”。由于他既崇尚抽象的理论,又注重理论的应用,突破了天命论、神秘主义的桎梏,敢于实践,勇于改革,因此在当时劳动人民创造的高度发达的物质财富的基础上,取得了不少有价值的科学成果,特别是天文历法和数学方面的成就更为突出。
我国古代曾经长期采用“十九年七闰月”的方法作为历法来计算阴历。祖冲之经过仔细推算和研究,发现这种历法虽然可以使两种(阴历和阳历)天数大致相符,但还不够精确,过了二百年就会相差一天。因此,他决心打破传统观念改革闰法。总结了前人经验,经反复实验,科学计算,改为第三百九十一年中有一百四十四个闰年。这样就相当精确了。他在一文历法中的另一重大成就是在历法计算中第一次应用了岁差,即指地球围绕太阳运行五周,不可能完全回到上一年的冬至点的现象。他算出了岁差为四十五年十一个月后退一度(一度等于60分),并在他的《大明历》中加以应用。虽然尚不够准确,但这在天文学史上却是一个空前的创举。为了使历法更精确,他还算出交点月,即月亮连续两次经过黄白交点所需的时间是27。21223日,这与现代测得的21。21222日极相近似。这为准确地算日食月食妇生的时间创造了条件。
在上述基础上,他制成了当时最科学的历法——《大明历》。那时他才三十三岁,公元462年,他把《大明历》交给朝廷,请求予以颁行。但遭到以贵族官僚戴法兴为首的坚决反对。戴法兴是一个很有权势的人物,又稍稍懂一点历史,但思想非常保守,戴硬说太阳转动一周(实际上是地球绕太阳一周)的时间有快有慢,没有规律。祖冲之反驳说:“太阳的转动是有一眯规律的,这是有事实根据的”。戴又说:“日月星辰的快慢变化,凡人是测算不出的”。祖冲之说“这些变化并不神秘,只要人们进行精密的观测和细致的推算,是完全可以算出来的。事实上人们已掌握了一定的规律”。把戴批驳得哑口无言,祖冲之终于击败了保守势力,取取得最后胜利,然而直到他死后十年在他儿子祖恒再三推荐下,新历法才在公元510年被正式采用。
祖冲之在数学研究方面,特别是在圆周率的研究上,做出了在数学史具有深远影响的巨磊贡献。古代最早求得的圆周率是“3”,西汉末年刘又得到3.1547的圆周率值。东汉的张衡算出3.1622的值,到了三国末年,数学家刘徽创造了用割圆术求得圆周率方法,得出3.141024的.值。祖冲之地吸收了其中一些有的东西,又不为前人结论束缚,经过自己的精密测算,算出圆周率值在3.1415926和3.1415927之间,并以22/7和355/113作为用分数表示圆周率的疏率和密率。这是世界上第一个最精确的圆周率,欧洲人奥托和安托尼兹直到公元1573年,才先后求出这个数值。实际上早在他们一千一百多年前,祖冲之就得到这个数值了,因而,日本数学家三上义夫主张称名为“祖率”。
祖冲之在推算圆周率时,对九位数的大数目,需要反复进行包括加减乘除与开方等方法的运算五百三十次以上。而且当时他还是用筹码(小竹棍)来计算的。从这里可以看出他严谨的治学态度和坚韧不拔的毅力。
后来,祖冲之把数学上的研究成果写成一本书,叫做“缀术”,内容很丰富,可惜早已失传了。
除了在天文、历法和数学方面做出重大贡献外,在他五十岁那年,曾经仿制成功一辆指南车,这车子不管怎么转动,车上木人的手总是指着南方。他又看到群众用人力磨数值非常吃力,于是开动脑筋,反复实验,制成了水碓磨。同时还制造成功一种“千里船”,经过试验,日行百余里。此外,他还懂得音乐,注过多种经典。因而祖冲之可以说是我国古代杰出而又博学多才的一位科学家。
祖恒是祖冲之的儿子,字景烁,生卒年月已无可考。他也是一个博学多才的数学家,曾在公元504年、509年和510年三次上书建议采用祖冲之的《大明历》,终于实现了父亲的遗愿。
祖恒的主要工作是修补编辑祖冲之的《缀术》。
数学的小故事30字篇八
老师说:数字是不会骗人的。一座房子,如果一个人要花上十二天才能盖好,十二个人盖就只要一天,二百八十八人只要一小时就够了。
学生说:一万七千二百八十人只要一分钟,一百零三万六千八百人只要一秒钟。此外,如果一艘轮船横渡大西洋要六天,六艘轮船只要一天就够了。四杯25度的水加在一起就变开水了!数字是不会骗人的!
数学的小故事30字篇九
叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
数学的小故事30字篇十
《数学的故事》是bbc出品的纪录片,介绍了数学作为一门学科的缘起和发展,以及对人类社会生活的巨大影响。在观影过程中,本人获得了很多启发,具体内容见以下四点。
数学——特别是西方数学——起源于非常实际的目的,从土地测量到灌溉系统再到推理演绎体系,数学至少在四个方面满足了人类的需求:
1认知——认识物质世界的构成;。
2测量——分配资源,制定各种标准;。
3记录——财富积累;。
4预测——改进生活条件。
对于西方世界而言,数学是解决问题的工具,它的作用对象是具体问题,因此其发展是自下而上的,即从笨拙、刻板、繁琐的计算开始,待到这些计算成为常识之后步入推理演绎阶段。
另一个意义是西方数学极强的社会性。只有社会生活才会涉及到用统一、通识的标准解决资源分配和物质交换问题,因此,数学是人类集体的智慧结晶,也是用之于集体的智慧,是维护社会秩序和寻求人类发展方向的工具和成果。
东方数学思想在意义上与西方大不相同。东方思想视数学为神秘的甚至是神圣的事物,数学本身就是目的和对象,而不是生活中的具体问题。所以,在东方数学中,会出现中国人推崇的吉祥“8”、归一“9”,也会出现印度人发明的“0”、“负数”这样具有哲学意义的概念。
东方数学的另一个意义是化繁为简。与西方数学发展起来的推理演绎不同,东方数学力求“四两拨千斤”的效果,例如中国人轻巧的解方程方法。
东方数学长于灵活快速,弊在复杂计算上不够精确,西方数学严谨精确,因此难免迟缓繁琐。前者适合探索和突破,后者适合保持和积累。
以常见的三道数学题为例:
1小狗跑步问题(甲、乙两人同时从两地出发,相向而行,距离是50千米。甲每小时走3千米,乙每小时走2千米,甲带着一只小狗,狗每小时跑5千米。这只小狗同时和甲一起出发,当它碰到乙后便回头跑向甲;碰到甲后又掉头跑向乙……如此下去,直到两人相遇。小狗一共跑了多少千米?)。
2假钱交易问题(一天有个年轻人来到王老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物,王老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,王老板无奈还了街坊100元.)。
3计算生日问题(用你的出生日,乘以12,得到数x,再用你的出生月乘以31,得到数y,只需要告诉我x与y的和,我就知道你的生日了。)。
前两个问题用西方数学按部就班去解题比较费力,用东方数学变通的思想就会很容易解出来,而第三题,如果不亲自列个方程,是很难看清其中玄机的。这就是东西方数学思想的鲜明对比。
数据分析是一个强应用性领域,通常面临的都是悬而未决的探索性问题,尤其是数据分析应用于认知人类自身的心灵和特征时,往往具有更多的未知性、不确定性和多样性,需要更灵活的思想、更巧妙的方式和更多样的尝试,这是东方数学思想的长处。另一方面,复杂的变量关系也需要更严谨、精准的测量模型,这是西方数学思想的精髓。西方数学还有一项绝技,就是代数与几何之间的转换,对于数据分析而言,这是数据可视化的基础,也是东方数学很难一蹴而就的。
所以最终还是要发挥两者的长处,将其结合起来运用,才能获得更丰富、更有趣也更准确的发现。
数学是一个由粗放向精细发展的认知工具,也是一种以量化为主的认知思想,它诞生以来指导了包括天文学、建筑工程甚至艺术学等多学科的发展,并形成了被广泛认可的基础学科。然而,但凡工具总有不完美之处,数学的抽象也决定了它在某些时刻注定“不切实际”。只有在使用中扬其长避其短,才能不辜负数学之闪光点,不迷离数学之混沌处。

一键复制