教案的编写需要注重思路清晰、结构合理和具体操作。编写教案前应充分了解教材和教学大纲的要求。教案范文中的优点和不足可以帮助教师们更好地反思和改进教学设计。
百分数二教案篇一
在六年级(上册)认识百分数里,教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。在此基础上,本单元继续教学百分数的应用,包括四个内容,依次是求一个数比另一个数多(或少)百分之几的实际问题,根据已知的税率求应缴纳的税款以及根据已知的利率求应得的利息,与折扣有关的实际问题,较复杂的已知一个数的百分之几是多少,求这个数的实际问题。编排了六道例题、四个练习,把全单元的内容分成四段教学,最后还有单元的整理与练习。
百分数二教案篇二
师:同学们,快要下课了,今天的知识你们明白了吗?生:明白了!
师:请自认为已经学会的同学举举手!嗬,都举手了!如果用一个百分数表示应该是多少?
生:100%。
师:那可不可能超过100%?
生:不可能超过。因为我们只有31个人,举手的不可能超过这些人。
师:那是不是说明100%就是最大的百分数了?
生:不是,还有更大的!比如说某公司今年营业额比去年增长了120%。
师:老师也见过。
课件出示:
师:谁能说说这个百分数说明了什么问题?
生:女教师太多了,男教师太少了!
生:女教师人数都是男教师人数的5倍了。
师:说得是啊,那大家此时的感觉是不是特别幸福啊?生笑。
师:既然没有最大的百分数,那有最小的百分数吗?生:没有。
师:1%不是吗?
百分数二教案篇三
师:前几天,万老师在报纸上看到这样一组信息。
课件出示:
看完这组信息,你有什么感想?
生:我觉得我们国家小学生的近视情况太严重了。
师:是啊,我国小学生的近视问题已经不容忽视了。那咱班的`近视情况怎么样?要不这样,咱们来个现场统计可以吗?来,请眼睛近视的同学举手。
学生举手,数数,汇报。
生:不一定。因为并不知道两个班的总人数是多少。
师:也就是说要看两个班的近视情况,只比较近视人数还不行。那在什么情况下可以呢?
生:在两个班的总人数相同的情况下可以。
师:那告诉我,咱班一共有多少人?
生:31人。
师:(板书31)可是,我们班只有26人。现在总人数不一样,那么该怎么比较呢?下面请大家以小组为单位研究一下这个问题。注意:组长把你们的研究思路写在报告单上,如果需要,可以使用计算器。
2.研究汇报,感受百分数的优越性。
师:现在到了展示大家集体智慧的时候了,哪个组先来汇报一下你们的想法?
组2:(质疑)如果我们需要比较10个班的近视情况呢?通分是不是也太麻烦了?
师:那你们有什么简便方法吗?
组2:我们是利用计算器直接计算出小数,再进行比较的。10÷。
31≈0.32,9÷26≈0.35。因为0.35大于哦0.32,所以六年级(2)班的近视情况更为严重。
生:(不好解释)。
师:来看这里,(出示百格图)想一想,如何在图中表示出小数0.32?
生:从中选择32个格子涂上颜色。(师涂颜色)。
师:还能用哪个数来进行表示呢?
生:32/100.
师:现在能说说这32/100表示什么意思吗?
生:我们班近视人数是总人数的32/100.
师:0.35还可以写成哪个分数?又表示什么意思呢?
生:35/100,表示六年级(2)班近视人数是总人数的35/100。师:像这里的32/100与35/100都表示近视人数是总人数的一百分之几,它们就是百分数。百分数一般不写作分数的形式,而是在分子的后面直接加上百分号。注意看(板书:32%)读一下。来,伸出手,我们一起来写下一个35%,先写——35,再写——%。师:看一下,哪个班的近视情况更为严重一些?为什么?生:六年级(2)班,因为35%比32%大。
师:为什么刚才9和10不能直接比较,到了现在就能比较了呢?生:因为现在两个班的人数统一了。
生:第二种,因为这种方法更简便。
生:第二种,因为这种方法更便于比较。
生:第二种,这种方法更直观。
师:正是由于百分数在统计过程中便于人们去比较和分析,所以人们才会如此喜欢使用百分数。
3.丰富感知,总结百分数的概念。
师:再来看看刚才的百分数,现在知道它们表示什么意思了吗?
生:表示柠檬汁是整瓶饮料的12%。
生:表示酒精含量是整瓶酒的56%。
生:表示棉的含量是整件衣服成分的80%。
师:那你们找到的百分数表示什么意思呢?同桌之间互相说说。学生互相说手中百分数的意义。
师:谁能总结一下,到底什么样的数叫百分数?
生:30%。
生:还是30%。
生:不是。
师:那30%表示什么?
生:表示果蔬汁与整杯饮料的一种关系。
师:你说得太棒了!也就是说,这里的30%并不能表示具体数量,而是表示果蔬汁与整杯饮料间的一种倍比关系。正是由于百分数仅仅表示两数之间的关系,所以百分数也叫百分比或百分率。(完善板书)。
4.深化理解,区分百分数与分数的联系。
师:刚才我们已经研究了我们两个班的近视情况,那么全国学生的近视情况到底如何呢?我们继续关注信息。
课件出示。
看完后,你想说点什么?
生:我感觉从小学生到大学生的近视情况越来越严重,我们应当保护自己的眼睛。
生:大学生的近视情况是在是太糟糕了,每100人中就有80人近视。
师:其实,我们同学中大部分的近视还属于假性近视,是完全可以通过后天的努力与保护进行矫正的。还有一点,大家知道吗?课件出示:
师:现在,大家是不是更加清楚自己应该做些什么了?生:是。
师:刚才信息中有三个分母是100的分数,想一想:哪些可以用我们今天学习的百分数来进行替换?组内讨论一下。
生小组内进行讨论。
师:谁想来说说你们的看法?
生:我们认为第一个和第三个可以替换成百分数,因为在这里它们都表示两数之间的关系,而第二个不可以,因为它带着单位名称,表示一个具体的数量,百分数不能表示具体的数量。
师:大家同意吗?这正是百分数与分数之间最大的区别。课件中把表示两数之间关系的分数替换成百分数:
课件出示:
百分数二教案篇四
课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。
师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。
让学生汇报调查的情况,并出示课本的银行存款利率表。
师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。
二、探讨新知。
1、计算公式。
师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。
利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。
请学生讨论利息的算法,老师适当的提示。
板书利息=本金×利率×时间。
全班齐读公式。
师:要求利息就必须要知道什么?
2、计算利息。
师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。
出示题目:
笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?
怎样算?淘气呢?
学生回答后,师板书。
笑笑得到的利息:300×2.52%×1=7.56(元)。
淘气得到的利息:300×3.69%×1=33.21(元)。
师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的.利息也不同。
师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。
三、巩固练习。
先让学生自己计算,在全班讲评。
先提醒学生说出保险金额、年保险费率的含义,再让学生计算。
四、课后总结。
如果把它存到银行,该怎样存呢?
建议学生课后亲自到银行存一次钱。
2、这节课你学到了哪些知识?
五、布置作业。
百分数二教案篇五
教学内容:人教版小学数学六年级上册第五单元教学目标:
1.使学生经历百分数产生的过程,体会百分数在统计过程中的优越性,区分百分数与分数、比之间的异同,深入理解百分数的意义。
2.使学生经历信息收集、处理与分析的过程,培养学生分析、比较、综合概括的能力。
3.使学生感受数学与生活的密切联系,激发学生学习兴趣,体会成功,促进学生发展。
教学准备:学生提前收集生活中含有百分数的物品,每个小组准备一台计算器。
教学过程:
百分数二教案篇六
生:我是从饮料瓶的商标中找到的。
生:我是从小食品袋上找到的。
生:我是从报纸上见到的。
生:我是从衣服标签中找到的。
师:听完介绍,你有什么感受?
生:百分数在我们生活中可真多,无处不在。师:你知道所找到的百分数表示什么意思吗?
生:我认为这里的“柠檬汁12%”表示把整瓶饮料平均分成100份,柠檬汁占了12份。
生:我认为“酒精度56%”表示酒精占整瓶酒的一百分之五十六。生:我认为这里的“80%棉”表示整件衣服成分有100份的话,棉占其中的80份。
师:看来同学们对百分数已经有了自己的理解,那么百分数到底表示什么意思呢?人们为什么如此喜欢使用百分数呢?这节课,我们就一起来研究一下百分数。(板书课题:百分数的认识)。
百分数二教案篇七
例4教学与折扣有关的问题,也是百分数的实际应用。教材先对打折作了具体的解释,让学生明白几折就是百分之几十,知道八折就是80%,从而把打折的实际问题与百分数的应用联系起来。原价和实际售价有什么关系是这道例题的教学重点,要从原价打八折出售得出原价80%=实际售价。这个数量关系能起两点作用,一是进一步理解打折扣的含义:图书按八折出售,实际售价只是原价的80%。二是形成求《趣味数学》原价的解题思路,在数量关系式里已知积与一个因数,求另一个因数,可以列方程解答。本册教材里,已知一个数的百分之几是多少,求这个数的问题都列方程解答,充分利用百分数的意义,加强对百分数乘法的理解,避免人为地把实际问题分类型,体现了各种百分数问题的内在联系。求出《趣味数学》的原价15元以后,对学生提出检验的要求,而且采用了两种检验方法。依据折扣的含义,既可以用实际售价除以原价,看是不是打了八折;也可以看原价的80%是不是实际售价12元。这样安排,不仅检验了原价15元是正确的,还多角度表现了原价、实际售价、折扣三者的关系,在进一步理解折扣的同时,沟通了三种简单的百分数问题的联系。练一练求《成语故事》的原价,也要求检验,让学生独立经历与例4同样的学习过程,再次体会问题中的数量关系。
练习三的编排大致分成两段,第1~4题是第一段,在理解折扣含义的基础上正确应用数量关系。第1、2题分别求打折后的实际售价与打折前的原价,都可以根据原价折扣=实际售价来解答。第4题求折扣,教材先让学生回答第3题,把按原价的百分之几出售改说成打几折出售,体会求几折只要求百分之几,为第4题作了铺垫。第5~9题是第二段,仍然以求实际售价或求原价为主要内容,灵活应用数量关系。第5题分别求实际售价与实际比原来便宜的元数,这里有简单问题与稍复杂问题的比较。第6题分别求实际售价与原价,是两种折扣问题的比较。第7、8题让购物问题更复杂一些,有利于学生在变化的问题情境中把握基本的数量关系。
例5和例6是较复杂的已知一个数的百分之几是多少,求这个数的问题,都列方程解答。两道例题分别把相并关系和相差关系作为列方程的相等关系,虽然相并与相差是学生早就认识的数量关系,但在复杂的百分数情境里不容易看到。为此,例题利用线段图给予直观帮助,让学生在例5的线段图右边的括号里填36,体会男生人数与女生人数合起来是美术组的总人数。例6在线段图上突出十月份比九月份节约用水的那一段,引导学生注意两个月用水量之间的相差关系。教材完整地写出两道题的等量关系,让学生感受等量关系式右边美术组的总人数、十月份用水的吨数都已知,在这样的情况下,列方程是解题的有效方法。虽然有了等量关系,但列方程还会遇到一个问题,即为什么设男生人数为x,设九月份的用水量为x。要引导学生抓住题目中已知的那个百分数,分析它的意义,体会这样的设句是合理的,不仅用x表示了单位1的数量,还很容易用含有字母的式子表示出女生人数,表示出十月份比九月份节约用水的吨数。
两道例题列出的方程里都有两个x,还含有百分数,解方程时要先化简方程的左边,再应用等式的性质。例题呈现了解方程的过程,并在练习四里安排三道解方程的习题,提醒教师要帮助学生正确地解方程。检验不是把未知数的值代入方程,而是要检验得数是否符合实际问题里的数量关系。具体地说,例5要检验男、女生的人数之和是不是36,还要检验女生人数是不是男生的80%。例6要检验十月份用水的吨数是不是比九月份节约20%,或者检验九月份的用水量节约20%,是不是440立方米。只有符合实际问题的得数才是正确答案。
练一练要先说数量关系再解答,突出寻找等量关系是解答这些题的关键,也是指向解题难点的基础训练。要引导学生从分析题目里已知的那个百分数开始,有条理地思考。如第11页练一练,种蓖麻的棵数是向日葵的75%,向日葵的棵数是单位1的量,蓖麻的棵数是单位1的75%,它们一共有147棵,等量关系就是蓖麻的棵数+向日葵的棵数=147;向日葵比蓖麻多21棵,等量关系就是向日葵的棵数-蓖麻的棵数=21。再如第12页练一练,美术组的人数比舞蹈组多20%,舞蹈组的人数是单位1的量,美术组比舞蹈组多的人数是单位1的20%,等量关系是舞蹈组的人数+美术组比舞蹈组多的人数=美术组的人数。解答练习四里的实际问题,也应经常让学生说说数量关系。
练习四第1~4题配合例5编排,第4题第(1)题曾经在六年级(上册)教过,那时也是列方程解答的,从第(1)题到第(2)题带出了稍复杂的分数问题。整数、分数、百分数都能表示两个数量间的倍数关系,第4题把貌似不同的问题组织在一起,凸现这些问题在本质上的联系。第5~9题是配合例6编排的,在第9题里把简单的百分数问题和较复杂的百分数问题编排在一起,可以适当进行比较。第10~16题是一堂练习课的内容,第11~13题是百分数的问题,进一步熟悉两道例题的解题思路,第14~16题是三道已知一个数的几分之几,求这个数的问题,促使例题的思考方法水平迁移。在六年级(上册)只教学稍复杂的分数乘法问题,另一些分数实际问题则安排在这里教学。
教学例4、例5、例6以及练习里的内容,要更新观念,改变习惯了的教学方法。首先是不要求学生识别分数乘法与分数除法两类不同的问题,尤其不要机械套用已知单位1用乘法,单位1未知用除法这些所谓的规律。过去这样教的解题效果虽好,但严重制约了学生的思维,把分析数量关系的过程变成了依据个别词语的简单判断。改进教法要加强对分数、百分数意义的理解,充分利用求一个数的几分之几是多少这个数量关系,合理选择列算式还是列方程解题。其次,不必进行有关分率与百分率的联想训练。如从用去25%想到还剩(1-25%);从第一天看了全书的1/5,第二天看了全书的1/6想到两天看了全书的1/5+1/6,这些联想是为列除法算式服务的。要引导学生充分挖掘和利用实际问题里的相并、相差等最基本的数量关系,作为列方程或列算式的依据,让小学与初中的教学相衔接,为学生的后继学习打下良好的基础。
百分数二教案篇八
1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。
3、在解决问题的过程中体会百分数与现实生活的密切联系。

一键复制