教案是教师进行教学活动的重要文本,可以为学生提供清晰、系统的学习指导。在编写教案时要注重培养学生的自主学习和问题解决能力,注重培养学生的批判性思维能力。通过阅读这些教案范例,你可以了解到不同教学情境下的教学设计和教学实施方式。
人教版级数学教案篇一
板书:
分数乘除法应用题复习。
根据条件分析单位“1”和找准对应分率。
用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。
用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。
人教版级数学教案篇二
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-85.6+0.9-+0-82。
2、如果+20%表示增加20%,那么-6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
人教版级数学教案篇三
[成功之处]题中出现隐含条件,教学时,可让学生用自己的语言和方法进行分析,这样,学生头脑中就会清晰地建立起一个属于自己的数量关系式模型,进而通过交流,掌握这一数量关系。
[不足之处]理解“追及问题”中的数量关系是解决练习题第10题第(3)题的基础,也是难点,部分学生理解得不透彻。
[再教设计]可利用课件动态模拟豹子和羚羊1秒钟后距离相差了多少,帮助学生理解它们的速度差,也可以通过画线段图,帮助学生正确理解题意。
人教版级数学教案篇四
ppt课件。
教学过程。
教师批注。
一、创设情境,复习导入。
1.(ppt课件出示)口算8×10=()我是这样想的:。
口算20×3=()我是这样想的:。
2.一分钟速算。
10×5=35×2=210×4=16×5=。
14×6=30×3=280×2=330×3=。
师:同学们的表现真是太好了!接下来我们继续来完成有关口算乘法的一些练习。
二、目标练习,巩固理解。
1.基础练习,完成教材第43页~45页练习九的第3,4,5,9题。
(1)第5题:完成第5题,看谁算得快?
鼓励算得快又对的学生说出口算过程,巩固对算理的理解。
(2)第9题:学生通过比一比谁算得又对又快,并说说自己的口算过程。
(3)第3,4题:联系生活解决问题。
学生独立找出数学信息,分析数量关系,列式计算,集体订正。
2.提高练习,完成教材第44页练习九的第6题~8题。
(1)ppt课件出示第6,7题,指名读题,分析数量关系。
学生仔细读题,理解题目。选择合适的计算方法,有理有据的进行表达。
同桌合作完成,集体讲评。
(2)第8题,夺红旗。激发学生兴趣,提高口算速度和准确性。
3.综合练习,完成教材第45页练习九的第10,11题。
(1)第10题,行程问题。
分析数量关系:“速度×时间=路程”,学生独立解决(1)(2)两个问题。利用豹子和羚羊之间的速度差乘追及时间等于追及的路程这一关系式解决问题(3)。(学生集体讨论,选择性拔高)。
(2)第11题,时间问题:1小时=60分,1天=24小时。
分析题意,理解隐含条件。
4.思维训练,完成教材第45页练习九的第12题。
(1)引导学生获取有效的数学信息,解决问题(1)。
(2)提示学生发现问题,解决问题(2)。
三、拓展练习,升华提高。
小组出题,互考互评。
四、总结反思,激发求知欲。
同学们通过本节课的学习,你们有什么收获?还有什么疑问呢?
五、布置作业。
完成相关习题。
人教版级数学教案篇五
1.使学生理解两位数乘一位数和几百几十数乘一位数(进位)的口算算理,掌握口算方法。
2.通过动手操作,使学生经历两位数乘一位数口算过程,体验解决问题策略的多样性。
3.使学生感受到口算乘法在生活中的广泛应用。
人教版级数学教案篇六
口算卡片、ppt课件。
教学过程。
教师批注。
一、复习旧知,揭示课题。
课件出示口算卡片。
3×25=16×4=23×4=21×5=。
120×3=150×4=3×240=2×360=。
2.揭示课题。
同学们对上节课的内容掌握得都很不错,我们今天继续学习口算乘法。
(板书课题:两位数乘整十数、整百数(不进位)的口算)。
二、创设情境,探究新知。
1.创设情境,合作交流。
某超市进行促销活动,进了一批水果,请大家帮忙整理整理。
(1)ppt课件出示主题图(1)。仔细观察,说说图中的数学信息并提出问题。
(2)学生独立列式,指名学生回答。(教师板书:6×10=)。
(3)小组合作,探究算理:怎样才能算出得数?小组合作来试一试吧!
(4)学生汇报,教师动态呈现口算方法,理解口算算理。(课件演示)。
预设:。
方法一:把10盒橙子分成两份,每份五盒,分别算出五盒的橙子数,再把两次算得的数加起来。
5×6=30,5×6=30,所以30+30=60(个)。
方法二:10盒橙子,可以先算9盒的个数,再加上1盒的个数。
6×9=54,54+6=60(个)。
方法三:先不看10上的0,先1×6=6,再在结果后加上0,所以6×10=60(个)。
(5)引导学生观察,总结口算方法。
2.知识迁移,举一反三。
(1)ppt课件出示计算下列各题。
5×10=9×10=18×10=40×10=。
(2)指名汇报各题口算方法。
(3)你喜欢哪一种方法,说说原因。教师提示:灵活选择口算方法。
3.深入探究,延伸算理。
师:同学们对橙子数的计算比较准确,而且思路清晰,下面让我们来继续整理苹果的数量吧!
(1)ppt课件出示主题图(2),分析图中的数学信息并列式:12×20。
(2)想一想:12×20应该怎样口算呢?
引导观察主题图,思考多种方法。独立想一想,小组讨论。
(3)学生独立完成,汇报口算方法。(教师指导学生汇报并写板书)。
三、课堂总结,积累经验。
这节课我们解决了不少生活中的问题。通过学习,你的收获是什么?
四、巩固提高,练习运用。
1.指导学生完成教材第41页“做一做”。
说一说你想怎么计算。
2.完成教材第43页练习九的第1,2题。
小组比赛,集体订正,指名学生说一说他的口算方法。
五、布置作业。
完成相关习题。
人教版级数学教案篇七
数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。
二.对教学内容的认识。
1.教材的地位和作用。
本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。
2.教材处理。
基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。
通过本节课的教学,我力争达到以下教学目标:
3.教学目标。
(1)知识技能:
借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。
(2)数学思考:
通过对较小的数的问题的学习,寻求科学的记数方法。
(3)解决问题:
能解决与科学记数有关的实际问题。
(4)情感、态度、价值观:
使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。
4.教学重点与难点。
根据教学目标,我确定本节课的重点、难点如下:
重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。
难点:感受较小的数,发展数感。
三.教法、学法与教学手段。
1.教法、学法:
本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。
因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。
2.教学手段:
1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。
2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。
四.教学过程。
(一).复习旧知,铺垫新知。
问题1:光的速度为300000km/s。
问题2:地球的半径约为6400km。
问题3:中国的人口约为1300000000人。
(十).教学设计说明。
本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。
人教版级数学教案篇八
师:下面请同学们独立进行计算,完成练习八p118第3题和第4题。
(1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?
(2)、根据题意分析数量关系,然后列式计算,全班讲评。
(3)、出示p118页5题。
提问:把谁看作单位“1”?
结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的。
人教版级数学教案篇九
上完这节课后,我感到了一种“出奇”的顺利。上一节课成功自然不在话下,但是总会有缺陷。可是“出奇”,当然也就奇了怪了。为什么这样说呢?原因是学生全都会了,几乎是不教就会。呵呵!没有想到的顺利,就已经说明其中潜伏着失败。
课后我对这节课的一些思考:
首先是教学目标的确定。原则上教学目标是根据教材内容而确定的,但是由于这节课的内容较为简单,学生掌握起来比较轻松,所以我感到教学目标不仅仅要根据教材内容来确定,而且还要考虑学生的特点以及他们的知识基础。
其次是教学重点的把握。既然学生知其然——会做,就必须知其所以然——怎么做?计算教学,尤其是口算的教学,比较难把握的是技能和思维的尺度。在口算教学中而知其然是计算技巧的掌握,知其所以然这是思维层次的锻炼。所以这节课的教学重点是知其所以然,既训练学生口算说理的过程,从这个角度上说,我这节课没有把握住这个教学重点。
通过这节课的教学让我更深刻地认识到备课中学生的重要因素,以及思维的训练才是学生学习数学知识的重点。课堂上求平求稳看似成功,实则隐藏着诸多败笔。
人教版级数学教案篇十
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
オネ耆归纳推理可用公式表示如下:
オs1具有(或不具有)性质p。
オs2具有(或不具有)性质p……。
オsn具有(或不具有)性质p。
オ(s1s2……sn是s类的所有个别对象)。
オニ以,所有s都具有(或不具有)性质p。
オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
小结:本节课学习了演绎推理的基本模式.
人教版级数学教案篇十一
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标。
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标。
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体。
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
人教版级数学教案篇十二
教学目标:
1、知识与技能:
1)了解导数概念的实际背景;
2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;
3)理解导数的几何意义;
4)能进行简单的导数四则运算。
2、过程与方法:
先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。
3、情态及价值观;
让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。
教学重点:
1、导数的求解方法和过程;
2、导数公式及运算法则的熟练运用。
教学难点:
1、导数概念及其几何意义的理解;
2、数形结合思想的灵活运用。
教学课型:复习课(高三一轮)。
教学课时:约1课时。
人教版级数学教案篇十三
教学重难点。
教学过程。
【知识点精讲】。
1、数列:按照一定次序排列的一列数(与顺序有关)。
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不)。
3、数列的表示:。
(1)列举法:如1,3,5,7,9……;。
(2)图解法:由(n,an)点构成;。
(3)解析法:用通项公式表示,如an=2n+1。
5、任意数列{an}的前n项和的性质。
人教版级数学教案篇十四
教材内容。
人教版三年级上册第八单元“可能性”例。
1、例2。教材分析。
让学生初步体会有些事件的发生是确定的,有些则是不确定的,对一些可能发生的结果进行简单的实验。
教学目标。
1.通过“猜测—实践—验证”的摸球游戏,让学生初步感受事件发生的可能性、不确定性。
2.使学生能够知道事件发生的可能性是有大有小的,能对一些简单的事件发生的可能性作出描述,并和同伴交换想法。
3.在活动交流中培养合作学习的意识和能力,获得良好的情感体验。教学重点。
体验判断确定与不确定性。教学难点。
判断确定与不确定的方法及准确性。教法学法。
直观演示、动手操作、小组合作、探究交流。教学设计。
本堂课,我设计了四个教学环节,“猜想—验证—推理—运用”。首先,我将学生分成若干学习小组,亲自参与“猜想—验证—推理”这一完整的探究过程,加深对知识的理解,进而将数学知识与实际生活相联系,真正做到学以致用。
教学过程。
一、激趣引入教师演示,学生猜想。
二、探究体验。
活动一。
1.出示3个袋子并贴在黑板上。
1号袋可能摸到,2号袋不可能摸到,3号袋一定能摸到。
活动二。
1.小组合作验证。
(课件出示“实验”的操作步骤)(1)小组内有序地轮流摸球,每人摸1次,要先猜后摸。
(1)大屏幕上出示五个盒子,观察应该怎样连起来?
(2)联系生活实际判断哪些事件的发生是确定的,哪些是不确定的。
活动三。
“谁是幸运星”游戏:袋子里有六个黄球,一个红球,谁能摸到红球谁就是幸运星。
三、巩固应用。
2你会按要求装球吗?(课件出示要求)(1)任意摸一个,不可能是红球。(2)任意摸一个,可能是红球。(3)任意摸一个,一定是红球。
四、拓展练习。
用“可能”、“不可能”、五、总结全课。
“一定”说话。
人教版级数学教案篇十五
掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.
教学重难点。
掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.
教学过程。
【示范举例】。
例1:数列是首项为23,公差为整数,
且前6项为正,从第7项开始为负的等差数列。
(1)求此数列的公差d;。
(2)设前n项和为sn,求sn的值;。
(3)当sn为正数时,求n的值.

一键复制