教案是指教师在备课过程中为了指导教学而编写的一种详细记录教案应该具备一定的教育、思想性和艺术性,能够激发学生的兴趣和思考能力。掌握好教案编写的基本要素,有助于提高教学质量和效果。
六年级数学一单元教案篇一
1、理解分数乘分数的意义,掌握分数乘分数的计算法则,学会分数乘分数的简便计算。
2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
六年级数学一单元教案篇二
一、创设情境,生成问题。
小红和大家一样,也是一个非常爱读书的孩子,星期天她和妈妈一起来到书店买书,从图中你知道了哪些数学信息?(一套书12本,每本24元。)。
师:根据这些信息,你想提出一个什么问题?
设计意图:从学生的想法出发,让他们发现问题,提出问题,体现学生的自主性。】。
预设生:一共花多少元?
师:这也是小红正在思考的问题。(课件出示)你们能解决吗?怎样列算式?
学生列算式,师板书24×12。
师:这是一道几位数乘几位数的算式?
师:前面我们已经学习了两位数乘一位数和两位数乘整十数,那像24×12这样的两位数乘两位数的算式又该怎样计算呢?今天这节课我们继续来研究两位数乘两位数。(揭示课题:两位数乘两位数)。
设计意图:引起学生的认知冲突,激发起学生学习的兴趣。】。
二、理解算理,探究算法。
1、在估算的基础上口算出实际得数。
师:大约一共花了多少钱呢?你能估算一下吗?
(1)预设3种估算方法,口算出得数。
生1:把12估成10,24×10=240。
请学生思考,这个240是估大了还是小了?(小了)为什么?
学生说想法,课件演示帮助理解。
24×2=48240+48=288。
生2:把24看成20,20×12=240。
师:也是240元,这次,又少计算了哪一部分呢?
学生口算4×12=48,240+48=288。
生3:把24看成20,把12看成10,20×10=200。
课件演示20×10=200这部分,计算一共花了多少钱?还要计算哪一部分?
(2)回顾口算过程,为笔算作好铺垫。
请学生回想一下口算的过程,是怎样算出一共要付288元钱的,以这种口算方法为例,(24×10=240,24×2=48,240+48=288)请同位互相说一说。
学生交流。
把没学过的知识转变成以前学习过的知识,这种方法在数学上叫做转化。
2、笔算。
请学生结合着口算的过程,试着用竖式的形式来计算24×12=?
请学生先独立试着算一算,然后小组讨论竖式。
展示学生出现的几种竖式,全班交流、完善:
预设生1:3个竖式。
预设生2:一个竖式,有+号,240后面写0。
预设生3:一个竖式,无+号,240后面无0。
学生讨论优化竖式。(重点讨论“+”和“0”的去存问题。)。
3、梳理过程。
(1)课件演示,理解算理,掌握算法。
先计算两本书的价格,用个位上的2和24相乘得48。接着计算10本书的价格,用十位上的1和24相乘,得到240。这个24的位置决定了它表示的是24个(十),也就是240,所以后面这个0可以省略不写。最后把它们(加起来),计算的就是12本书的价格了。
设计意图:结合着12本书,学生理解算理。动态的课件演示,帮助学生掌握算法。】。
请同位互相说一说怎样计算两位数乘两位数,然后请在探究中写错竖式的学生再计算一遍。
设计意图:这是学生内化的一个过程。】。
(2)师生共同板书,梳理算法,加深理解。
现在没有了书,我们再一起把这个笔算过程写在黑板上。
学生说教师板书竖式。
(3)比较优化方法。
请学生对比口算过程和笔算过程,选择自己喜欢的方法,说说理由。
当我们在计算两位数乘整十数的时候,可以直接用口算的方法,那么在计算这样的两位数乘两位数的时候,用竖式计算更简便一些。
三、巩固应用,加深理解。
请同学们用竖式的形式计算14×22=43×12=。
学生独立完成,集体订正,指名说一说计算过程。
设计意图:题不在多,重点是检查学生的掌握情况。】。
四、回顾总结,拓展延伸。
今天我们学习的是(两位数乘两位数的笔算方法),如果小红下次买18本书,每本书24元,又该怎么计算呢?请同学们课下动脑筋好好研究研究。
六年级数学一单元教案篇三
1、用创设情境法,激发学生对比的知识的研究兴趣。
2、从日常生活中,培养学生能够发现数学问题。
3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。
4、当堂巩固,当堂反馈练习,练习形式多样,使学生从多种学习方式的活动中理解比的意义。
5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。
六年级数学一单元教案篇四
1、掌握分数乘法计算过程中的约分方法,能正确熟练进行分数乘法计算,提高学生的计算能力。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
六年级数学一单元教案篇五
理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、过程与方法。
通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
3、情感态度与价值观。
渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。
掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
理解圆锥体积公式的推导过程。
不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。
一、创设情境,提出问题。
生:我选择底面的;
生:我选择高是的;
生:我选择介于二者之间的。
师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?
生:只要求出冰淇淋的体积就可以了。
师:冰淇淋是个什么形状?(圆锥体)。
生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。
二、设疑激趣,探求新知。
师:那么你能想办法求出圆锥的体积吗?
(学生猜想求圆锥体积的方法。)。
生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。
师:如果这样,你觉得行吗?
教师根据学生的回答做出最后的评价;
生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?
师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?
小组中大家商量。
生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。
师:此种方法是否可行?
学生进行评价。
师:哪个小组还有更好的办法?
生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)。
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。
1、各小组进行观察讨论。
2、各小组进行交流,教师做适当的板书。
通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。
3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)。
4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。
师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?
生:大约是圆柱的一半。
生:……。
师:到底谁的意见正确呢?
师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!
要求:
实验材料,任选沙、米、水中的一种。
实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。
(生进行实验操作、小组交流)。
师:
谁来汇报一下,你们组是怎样做实验的?
通过做实验,你们发现它们有什么关系?
生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。
生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)。
师:同学们得出这个结论非常重要,其他组也是这样的吗?生略。
师:请看大屏幕,看数学小博士是怎样做的?(课件演示)。
齐读结论:
师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?
师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?
(噢!三种冰淇淋的体积原来一样大)。
联系生活,拓展运用:
本练习共有三个层次:
1、基本练习。
(1)判断对错,并说明理由。
圆柱的体积相当于圆锥体积的3倍。()。
一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()。
一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()。
(2)计算下面圆锥的体积。(单位:厘米)。
s=25、12h=2.5。
r=4,h=6。
2、变形练习。
出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,
(1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?
(2)、找一找这些计算方法有什么共同的特点?v锥=1/3sh。
(3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?
3、拓展练习。
整理归纳,回顾体验。
(通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)。
六年级数学一单元教案篇六
(一)、操作探究算理。
1、提问:1/2×1/5究竟等于多少呢?
2、提出操作要求:这张纸代表面积是1公顷菜地。请你们小组合作用量一量、分一分、涂一涂的方法,说明1/2×1/5=1/10。
3、学生动手操作,教师巡视。
4、小组汇报研究成果。
先把整张纸对折,纸就被平均分成两份,每一份是这张纸的1/2,再把这1/2部分平均分成5份,涂出其中的1份,这1份就占整张纸的1/10。说明1/2×1/5=1/10。
5、结合演示进行归纳。
用演示涂色过程:我们先把这张纸平均分成2份,1份是这张纸的1/2,又把这1/2平均分成5份,也就是把这张纸平均分成了2×5=10份,1份是这张纸的1/10。由此可以得到:1/2×1/5=1×1/5×2=1/10(板书算式)。
(二)、迁移延伸,归纳法则。
1、理解题意:与解决问题。
(1)的方法相同,种玉米的面积占这块地(1/2公顷)的3/5,也是把这块地的面积看作单位“1”。求种玉米的面积就是求1/2公顷的3/5是多少,用乘法计算。
2、小组讨论并操作:怎样列式?涂色表示1/2的3/5。怎样计算?
3、交流计算方法和思路。
(板书算式)。
4、提问:观察黑板上的这两个算式,你能说一说分数乘分数的计算方法吗?
5、通过学生讨论交流得到:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
六年级数学一单元教案篇七
生:发展体育运动,增强人民体质,刻苦锻炼,振兴四小。
2、情境质疑。
情境1。
彬:作业写完了,干什么呢?对了约张洞名去跑步吧(嘟…..嘟…..0。
铭:喂,找谁啊?
彬:张洞铭,今天有空吗?我们一起去跑步。
铭:哦,今天不行,我有事,明天行吗?
彬:好吧,明天6:00在明珠花园见,不见不散。
铭:好的。明天见。
师质疑:他们俩个能按时见面吗?从他们的对话中你知道了什么?(板书:6:00)。
生:a不能,因为没说是上午还是下午。
师·:我们一起看看接下来到底发生了什么?
情境2。
(门铃响叮-----咚)。
彬:谁啊,一大早就来敲门?
铭:我是张洞铭,你怎么还在家?
彬:怎么了?
铭:你不是说6:00在明珠花园见面去跑步吗?我等了你两个小时了。
彬:嗨,我是说下午6:00。
铭:啊??
彬:真笨。
师:为什么张彬和张洞铭没按时见面?
生a:他们没说是上午6点还是下午6点。(师板书:上午6时、下午6时)。
师:如果是你约同学你会怎么说?张彬你准备是什么时候的6时跑步呢?
师:为什么会出现这种情况?
生:有两个6时,分不清了.....
3、图片引入。
师:老师再给大家看一组图片(幻灯),看看是几点小朋友在干什么呢?
生:9点。
师:怎么有两个9点呢?它们是同一时刻吗?(板书:上午9时,下午9时)。
师:看来一天不仅有两个6:00还有两个9:00呢。
六年级数学一单元教案篇八
教学目标:
知识与技能:
(1)认识圆,知道圆的各部分名称。
(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。
(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。
过程与方法:
(1)经历动手操作的活动过程,培养学生作图能力。
(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。
(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。
情感、态度与价值观:通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。
教学目标:
1、通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。
2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。
3、在活动中,感受圆与其它图形的'区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
教学重点:探索圆的各部分名称、特征和关系。
教学难点:通过实际的动手操作体会圆的特征。
教学过程:
1、出示幻灯:生活中的圆。
摄影作品,在这些美丽的图片中你们发现了什么图形?生活中你在哪见过圆?
2、揭示课题:圆无处不在,这节课我们就来认识它。
板书:圆的认识。
3、同学们喜欢玩套圈的游戏吗?现在就来试试?
我这有一个玩具,要求你只能站在距离它三米远的地方扔圈,你可以站在哪里?
我们用三厘米代表三米,你能在本上标出你所在的位置吗?
2、实投学生成果(由画几个点到多点,直到圆)。
问:站在这几点都可以吗,为什么?只能站在这几点上吗?
出现圆后问,还有地方站吗?
3、课件演示。
师:那么到底可以站在哪?(圆上任意一点)。
圆上这样的点有多少个?
1、屏幕上有一个圆,同学们能利用现有的工具制造一个圆吗?
2、学生画圆,师巡视。
3、汇报不同画圆的方法(先找用圆形工具画的汇报)。
拿线绳画的黑板演示。
圆规画的实投展示。
4、总结圆规画圆方法。
5、学生练习圆规画几个圆。
既然我们可以借助圆形工具来画圆,人们为什么还会发明圆规呢?
6、观察自己所画的圆,除了一条封闭的曲线还有什么?(点儿)。
给它取个名字——圆心(如果学生能说就让学生说)用字母o表示。
7、拿出手中的圆纸片,你们有办法确定这个圆的圆心吗?
学生动手折。
问:除了圆心你们还发现了什么?(折痕)。
你发现的折痕是什么样子的。
师:谁愿意到前面介绍自己的发现?揭示直径半径定义。
你能在圆上画出直径和半径吗?
在自己所画的圆上标出圆心、画出半径和直径。
圆心和半径到底有什么作用呢?画一画就知道了。
1、用圆规在本上画出几个不同的圆,看谁画得漂亮。
2、投影展示。
问:你们画得圆有的在上、有的在下、有的偏左有的偏右,什么决定的?
学生汇报,圆怎么这么听话呢。
师小结:圆心决定圆的位置,怪不得人家叫圆心呢。
这些圆大小各异,怎么画就能让他有大有小?
小结:圆的半径决定圆的大小(圆规两脚间距离)。
那就结合老师的提示利用手中的工具小组共同研究吧。
4、研究提示。
同一个圆内,半径与直径有什么关系?
同一个圆内,半径有多少条?
同一个圆内,半径的长度都相等吗?
汇报。
同圆直径是半径的2倍板书d=2r。
问:你怎么知道的?
同圆的半径有无数条,为什么?(圆上有无数的点、折痕中发现)。
同圆的半径有无数条,那么直径有多少呢?
板书:同圆内半径有无数条。
同圆的半径都相等,为什么?(通过测量,通过推理)。
同圆的半径都相等,那么直径都相等吗?
板书:同圆内半径都相等。
所以古人说:圆,一中同长也。
这个一中指什么?同长指什么?
边看幻灯边读这句话。
一中同长的圆在生活中应用很广泛。
4、车轮的外形为什么做成圆的,你能解释吗?
为什么不把车轮做成这些形状的?(出示正多边形图片)。
1、由正三角形到正十二边形,有什么变化?
2、想象,正100边形会是什么样子?(接近圆,但不是圆)。
正3072边形呢?(更接近圆,但还不是圆)。
到底多少边的时候就是圆了呢?
4、阴阳太极图。
5、下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?
问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。
问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。
问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。
课下每个同学选择一个自己最感兴趣的课题来研究。
学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!
六年级数学一单元教案篇九
适用于中等学生。
教材第2—4页。
1、掌握圆各部分名称以及圆的特征;会用圆规画圆。
2、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
3、渗透知识来源于实践、学习的目的在于应用的思想。
掌握圆各部分名称以及圆的特征,借助动手操作活动,培养学生运用所学知识解决实际问题的能力。
一课时。
谈话引入:今天非常高兴能和同学们一起来学习、研究一个数学问题。我们以前已经初步认识了圆,你能找出生活中哪些物品的形状是圆的吗?师(检查课前准备):看来大家平时非常留心观察。课前请同学们画两个大小不同的圆,并把它们剪下来,你们准备好了吗?师:把它们举起来,大家互相看一看。回想自己画圆、剪圆的过程,你能说说圆是什么样子的吗?(师一手拿一个圆)(留给学生充分的思考交流的时间)师:同学们观察得真仔细。圆的边是弯曲的,跟以前学的长方形、正方形的边是不同的。今天我们就来研究这种平面上的曲线图形。(板书课题)。
1、教师引导:圆里究竟藏有什么秘密呢?下面我们来做一个小实验。把你的圆对折,再对折,多折几次,把折痕画出来,看看你有什么发现,并把你的发现在小组里汇报。最后看看谁的收获多。(留时1分钟)。
2、师:你们组观察得真仔细!大家的发现可真不少,现在我们就把刚才的发现整理一下。
3、展示探究结果。结合多媒体课件辅助,完整认识圆的特征师问:谁来告诉老师,你有哪些新发现?你怎样发现的?(大约8分钟)结合学生交流、汇报探究结果,及时引导梳理。主要从圆的圆心、半径、直径、等方面来认识。这里特别要注意通过板书帮助学生进行新知的有目的的整理。
1、基本练习(4分钟)。
〈1〉投影出示:找出下列圆的半径、直径。
〈2〉半径、直径的相关计算。
〈3〉概念的判断和识别。
2、应用练习。(10分钟)。
〈1〉车轮为什么做成圆形的,车轴应安装在哪?如果车轮制成方形的、三角形的,我们坐上去会是什么感觉呢?结合课件演示〈2〉你能用今天学习的圆的知识去解释一些生活现象吗?a:举行篝火晚会时,人们总是不知不觉会围成一个圆形,为什么?b:平静的湖面扔一小石子,会有什么变化?为什么?c:月饼为一般都做成圆形的,为什么?小结:看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。
3、游戏(猜谜语):
师:同学们学到现在,已经很累了,我们来轻松一下吧。老师给大家猜一个谜语:有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。(利用电脑配上画面)问题一:羊吃草的情况与今天学的知识有关吗?我们来看一看羊吃草的最大范围有多大好吗?(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的最大范围是一个圆。)问题二:拴羊的绳子与这个圆有什么关系吗?(是这个圆的半径)问题三:钉在那儿的木桩是这个圆的什么呢?(是这个圆的圆心)问题四:如果要让这个羊吃草的范围更大一点可以怎么办?(把绳子放长一点,也就是把半径扩大)问题五:如果要让羊到另外一个地方去吃草,可怎么办?(可以把木桩移动一个地方,也就是移动圆心的位置),问题六:这说明圆的半径与圆心与圆有什么关系呢?(圆的半径决定了圆的大小,而圆的圆心可以决定圆的位置。)。
1、质疑(篮球是圆形吗?表示圆心、半径和直径的字母可以随意改变吗?)。
2、这节课你都学会了什么?不管怎么说,老师觉得同学们的学习表现是不错的,所以我提议:我们一起伸出手划上一个圆满的句号。(句号是圆形的)。
3、延伸:
1、用圆作画。

一键复制