教案能够提前规划并安排好教学资源,为教学提供有效支持。教案要注重培养学生的思辨能力和创造能力。小编为大家整理了不同领域的教案范例,希望能够帮助到广大教师。
有理数的混合运算教案篇一
学习小组交换批改,发现问题进行交流,比较不同的解法。鼓励学生大胆尝试,通过交流探究,提高学生的思维能力。
练习后由学生自讲思路。
运算法则:先算乘方,再算乘除,最后算加减。
进一步让学生了解运算律的应用可以简化运算。
教学反思:本节课是有理数混合运算的习题课,通过“24点”游戏这个活动,使学生熟练驾驭有理数的基本运算。在课堂上学生看书、讨论、计算,一直在紧张的动脑,这样学生的学习积极性极大的调动起来,不仅使学生理解了知识,增强了能力,而且培养了合作精神,良好的学习习惯,教学效果比较理想。但是活动设计是课本中的一个数学活动设计,在教学过程中,简单的拿来主义,没有进行消化分析,一部分学生一时不知如何进行24点的变式。应设计符合学生心理特点的、有趣的.变式训练,尽可能的将各种运算形式在随机抽取的过程中出现,达到训练的目的。
回顾与反思。
教师巡视并做个别指导。
这节课你有哪些收获?
学生分组练习使学生进一步理解正确运用运算法则和运算律,可以使运算更简便。
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。学生尝试小结,梳理知识,自由发表心得,能锻炼学生语言表达能力。
质疑。
问难教师点拨:对本章内容你还有哪些疑惑?学生质疑答疑鼓励积极思考,查漏补缺。
布置。
作业展示问题:。
针对小组收获,互出一题并解答.学生解答可调动不同层次的学生的积极性,进一步起到查漏补缺的作用。
板书设计:。
回顾与反思。
有理数。
相绝数加乘乘运运。
反对轴减除方算算。
数值律顺序。
教学反思:本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力。但是本节教学设计中,没有拔高能力题的设计,所以尖子生有“吃不饱”的现象。
有理数的混合运算教案篇二
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点。
难点:减法统一成加法再写成代数和的形式。
教学过程。
一、复习引入。
课本p56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5d(d0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
二、新课的进行。
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:p57议一议。
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)。
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)。
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4。
=1.3+1.1-1.4=2.4-1.4=1(千米)。
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1计算(p58例1)。
例2计算:(1)(2)。
解:(1)。
(2)。
三、课堂练习。
1、课本p58随堂练习1、(1),(2),(3)。
2、计算:(1)(2)。
四、课堂小结。
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。
五、作业设计。
1、p58习题2.71,3。
有理数的混合运算教案篇三
——24点游戏。
上课学校:高桥-东陆学校执教者:丁迎华班级:预备2班。
地点:预备2班时间:3月16日。
一、背景分析:
1.学情分析:考虑到预备班的学生年龄偏小,而且由于数学学科的特点,比较枯燥,特在教学中安排了一节24点游戏内容,以提高学生的学习兴趣,发挥学生的积极性和参与性。
2.教材分析:本节课是在学完有理数这一章之后的研究性阅读材料,可以通过本节课的学习旨在提高学生四则运算的速度和心算的能力。
教学目标:
1.熟练掌握运算律、提高四则运算的速度和心算的能力;
2.培养学习数学的兴趣;
3.通过合作解决新的问题。
二、教学重点、难点:
1.运算速度和心算能力;
2.培养合作精神;
3.体会游戏规则的变化其实是由数的范围发生了变化。
三、教学设计:
二期课改的理念是“以学生发展为本”,充分发挥学生的主观能动性,积极参与课堂活动,在教学过程中,教师要充分发挥情感因素在教学中的作用,与学生建立平等合作的关系,确立学生在学习中的主体地位。特别是在数学教学中,由于数学学科的逻辑性和思维性很强,学习数学对于学生来说感到非常的枯燥、乏味,学生只是为了学而学,没有主动学习的兴趣,所以在新教材的编排里,编入了24点游戏一节阅读材料,因此我在上完有理数以后,利用24点游戏,通过与数的计算有关的游戏,学会从生活和游戏中体验数学,感悟数学,感受数学美,培养喜欢数学的情感,从而激发学生的学习兴趣和团队合作、参与竞争等能力。
四、教学过程:
1.拿出教具,扑克牌,引出课题。
2.说出24点游戏规则。
3.电脑随机选择8组数据,在这期间可以考察学生对运算律和运算顺序的熟练程度。
4.教师给出1,5,5,5四个数,给出新的法则,引进分数。
5.教师继续给出新的法则,引进负数。
6.学生小结。
7.课后思考。
有理数的混合运算教案篇四
3。通过加法运算练习,培养学生的运算能力。
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
1。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2。关于去括号法则,只要学生了解,并不要求追究所以然。
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4。先把正数与负数分别相加,可以使运算简便。
5。在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
(一)知识教学点
1。了解:代数和的概念。
2。理解:有理数加减法可以互相转化。
3。应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
1。教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2。学生写法:练习寻找简单的一般性的方法练习巩固。
1。重点:把加减混合运算算式理解为加法算式。
2。难点:把省略括号和的形式直接按有理数加法进行计算。
1课时
投影仪或电脑、自制胶片。
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7。
师:(1)读出这两个算式。
(2)+、-读作什么?是哪种符号?
+、-又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正)。
师小结:减法往往通过转化成加法后来运算。
有理数的混合运算教案篇五
3.通过加法运算练习,培养学生的运算能力,数学教案-有理数的加减混合运算。
教学建议。
(一)重点、难点分析。
(二)知识结构。
(三)教法建议。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.。
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。
有理数的混合运算教案篇六
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点。
难点:减法统一成加法再写成代数和的形式。
课本p56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5―(―0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:p57议一议。
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)。
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)。
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4。
=1.3+1.1-1.4=2.4-1.4=1(千米)。
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1计算(p58例1)。
例2计算:(1)(2)。
解:(1)。
(2)。
1、课本p58随堂练习1、(1),(2),(3)。
2、计算:(1)(2)。
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。
五、作业设计。
1、p58习题2.71,3。
有理数的混合运算教案篇七
1、要求学生理解加减混合运算统一为加法运算的意义。
2、能初步掌握有关有理数的加减混合运算。
重点:如何更准确地把加减混合运算统一成加法。
难点:将一个加减混合运算式写成省略加号的和的形式。
一、知识导向:
本节是在对前面所学的有理数的加法运算法则及减法运算法则的综合运用,所以必须对有关法则有更深层次的认识,并能在运算中加以灵活运用。
二、新课:
1、知识基础:
其一:有理数的加法法则;
其二:有理数的减法法则。
其三:“+”、“-”在不同情形的意义(运算符号及性质符号)
2、知识形成:
(引例)计算:
根据减法法则,按照运算顺序,有:
原式
在一个加式里,通常把各个加数的括号和它前面的加号省略不写,即有:
这个式子仍看作和式,有两种读法,
按性质符号:读作“负8、正10、负6、负4的和”
按运算意义:读作“负8加上10减去6减去4”
例:把写成省略加号的和的形式,并把它读出来(两种读法)。
例:按运算顺序直接计算:
三、巩固训练:
p46.1、2
四、知识小结:
本节课所涉及到的新知识点比较少,但在其中就特别注意的是,如何保证学生在省略特号时,能尽量减少错误的出现,并能对省略加号的算式的准确读法。
五、家庭作业:
p471、23
六、每日预题:
如何结合本节课所学习的内容对有关有理数的加减混合运算进行简化运算?
有理数的混合运算教案篇八
一、选择题(共10题)。
1.下列关于有理数的加法说法错误的是()。
a.同号两数相加,取相同的符号,并把绝对值相加。
b.异号两数相加,绝对值相等时和为0。
c.互为相反数的两数相加得0。
d.绝对值不等时,取绝对值较小的数的符号作为和的符号。
答案:d。
分析:考查有理数的的加法法则。

一键复制