教案包括教学目标、教学内容、教学方法、教学步骤等要素。教案的编写要灵活运用不同的教学策略和教学方法。小编为大家整理了一些精选的教案范例,希望能够给大家提供一些启示。
初中数学教学设计教案篇一
课本第139页.
教学目标。
1.知识与技能。
会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.
2.过程与方法。
经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.
3.情感态度与价值观。
经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用.
重、难点与关键。
1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.
2.难点:用尺规画一个角等于已知角.
3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤.
教具准备。
一副三角板、量角器、多媒体设备、投影仪.
教学过程。
一、引入新课。
1.投影一个五角星的图案,请学生观察图形.(如右图)。
初中数学教学设计教案篇二
教学目标:
1、使学生认识圆,知道圆各部分的名称。
2、掌握圆的特征及同一圆内半径与直径的关系。
3、会用圆规按指定的要求画圆。
4、通过观察、操作、讨论,培养学生的探索能力。
教学重点:圆的特征及半径与直径和关系。
教学难点:圆的特征。
教学具准备:
学具:大小不同的圆片各2个,直尺、圆规。
教具:圆形纸片,圆规,实物投影仪,自制多媒体课件。
教学过程:
一、课堂启发,自选学标(感动是学习的动力)。
利用多媒体展现各种不同形状的平面图形并提问:
1、找出你认为最与众不同的图形,为什么?你最想学哪种图形?
2、板书课题:圆的认识。
3、揭示学标:你最想学习圆的什么知识?(认识圆、掌握圆的特征、会画圆)。
二、预习思考,实践操作(感觉是学习的入门,知识来源于生活)。
对比思考:我们以前学习的长方形、正方形、三角形、梯形等都是平面图形。这节课我们要学习的圆也是一种平面图形,它和我们以前学的平面图形有不同之处,你们发现了吗?(长方形、正方形、三角形、梯形等都是由线段围成,而圆是由曲线围成的平面图形)。
体验圆的形成:你认为用什么方法可以得到一个圆?你认为哪种方法好?你会画圆吗?用你最喜欢的方法画出来吧!
1、学生操作:用自己喜欢的方法画任意一个圆(不限定用圆规)。
(学生画出的可能有些不是圆)。
2、圆规画圆。
教师:请大家拿出手中的圆规,认真观察一下圆规的样子,并用它尝试画一个标准的圆。(学生初次画圆)。
教师:请你介绍一下你用的是什么工具,是怎么画圆的?
3、讨论:画圆的步骤是分哪几步?
教师在黑板是演示怎用圆规正确地画一个圆,作教学使用。
4、小结:(1)画圆的步骤是:一是定好两脚的距离;二是固定一点;三是旋转一周。
设悬:学会了画圆,你想不想进一步了解圆?圆的大小跟什么有关,圆的位置跟什么有关?(为下面学习圆的特征做铺垫。)。
三、问题讨论,认识圆心(感知是学习的基础)。
1、举例说说日常生活中哪些物体的形状是圆形的?
2、动手操作:(1)你手中的圆片是怎样得来的?
(2)对折打开,连续3次。还可以折下去吗?
3、观察讨论:折过若干次后你发现了什么?
4、归纳小结:这些折痕都相交于一点,正好在圆的正中心,我们把圆中心的一点叫作圆心,用字母“o”来表示。画圆时,圆心在哪里,圆就画在哪里,所以圆心决定圆的位置。
5、验证内化:在你手中的圆片上标出圆心,并用字母表示。
四、教材分析、探索特征(感悟是学习的升华)。
过渡导入:学习了圆心,那么同学们能不能自学其它有关圆的(知识?(小组合作自学)。
1、认识圆的半径。
教师:刚才同学们画的圆都比较好,现在大家拿出直尺画出从圆心到圆上的任意一点的线段并量一下它们的距离看看你们发现了什么?这样的线段你能画多少条出来?(这些线段的长度都相等;画不完,这样的线段有无数条。)。
提问:你是怎样观察得出在一个圆内这样的线段有无数条的?(因为围成圆的曲线是由无数个点组成的连接圆心到圆上任意一点的线段有无数条)。
教师:连接圆心到圆上任意一点的线段有无数条,这样的线段我们把它叫做半径(齐读:连接圆心和圆上任意一点的线段叫做圆的半径。)半径一般用字母r表示。
由于圆周上有无数个点,所以半径就有无数条。
说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。
2、认识圆的直径。
(1)除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大校学生讨论后回答(直径)。
教师:请学生同学们动手画一画直径。画得越多越好。画时要注意什么?(过圆心,两端在圆上)齐读:通过圆心且两端都在圆上的线段叫圆的直径。直径一般用字母d表示。
(2)让学生观察自己画的直径,找出直径的特征。
(3)直径的特征。学生动手操作量一量数一数在同一圆内,直径的长度有什么特点,直径能不能画完?为什么?说明理由。(引出半径和直径的关系,动手验证。或直尺量,或用圆纸片对折)。
3、半径和直径的关系。
师生讨论:
(1)把你学到的知识告诉老师与同学们?
(3)学习了这些特征,你知道圆的大小由什么决定了吗?(前后呼应)。
小结:在同圆或等圆里,[半径有无数条,直径也有无数条,所有的半径都相等,所有的直径也都相等;直径是半径的2倍,半径是直径的一半]。
4、操作内化:把刚才学到的知识在圆片上表示出来。
五、课堂练习,学以致用(感恩是学习的境界,知识又服务于生活)。
多媒体展示:
1、判断:
(1)两端都在圆上的线段叫作直径。--()。
(2)直径是半径的2倍,半径是直径的一半。---()。
(3)直径和半径都是直线。()。
(4)用两脚之间的距离是2厘米的圆规画出的圆,它半径是2厘米。()。
2、选择正确的半径、直径:bad。
3、讨论操作:ce。
(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。
初中数学教学设计教案篇三
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析。
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
1、回顾与思考。
活动内容:
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c。
活动目的:
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现。
活动内容:如图2。
初中数学教学设计教案篇四
现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。
本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。
一、注重问题情境的创设。
著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察:
星期一二三四五六合计。
积分+3-2-4-2+2+4。
然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。
本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。
2、教学重点、难点处的问题设计。
4、在学习反思中的问题设计。
初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格:。
通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。
总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。
初中数学教学设计教案篇五
2、使学生分清常量与变量,并能确定自变量的取值范围。
3、会求函数值,并体会自变量与函数值间的对应关系。
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法。
5、通过函数的教学使学生体会到事物是相互联系的。是有规律地运动变化着的。
教学重点:了解函数的意义,会求自变量的取值范围及求函数值。
教学难点:函数概念的抽象性。
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系。
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系。
解:1、y=30n。
y是函数,n是自变量。
2、n是函数,a是自变量。
(二)讲授新课。
刚才所举例子中的函数,都是利用数学式子即解析式表示的。这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义。如第一题中的学生数n必须是正整数。
例1、求下列函数中自变量x的取值范围。
(1)(2)。
(3)(4)。
(5)(6)。
分析:在(1)、(2)中,x取任意实数,与都有意义。
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求。
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且。
第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零。的被开方数是。
同理,第(6)小题也是二次根式,是被开方数,小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零。
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可。教师可将解题步骤设计得细致一些。先提问本题的分母是什么?然后再要求分式的分母不为零。求出使函数成立的自变量的取值范围。二次根式的问题也与次类似。
但象第(4)小题,有些同学会犯这样的错误,将答案写成或。在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用。限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”。说明这里与是并且的关系。即2与-1这两个值x都不能取。
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元。
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。
解:(1)。
(x是正整数,
总结:对于反映实际问题的函数关系,应使得实际问题有意义。这样,就要求联系实际,具体问题具体分析。
对于函数,当自变量时,相应的函数y的值是。60叫做这个函数当时的函数值。
例3、求下列函数当时的函数值:
(1)————(2)—————。
(3)————(4)——————。
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应。以此加深对函数的理解。
(二)小结:
这节课,我们进一步地研究了有关函数的概念。在研究函数关系时首先要考虑自变量的取值范围。因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值。另外,对于反映实际问题的函数关系,要具体问题具体分析。
作业:习题13.2a组2、3、5。
今天的内容就介绍到这里了。
初中数学教学设计教案篇六
设计思想:
溶解度是第七章教学的重点和难点。传统教学模式把溶解度概念强加给学生,学生对概念的理解并不深刻。本节课从比较两种盐的溶解性大小入手,引发并活跃学生思维,设计出合理方案,使其主动地发现制约溶解度的三个条件,然后在教师引导下展开讨论,加深对“条件”的认识。这样设计,使以往学生被动的接受转化为主动的探索,充分调动了学生善于发现问题,勇于解决问题的积极性,体现了尝试教学的基本观点:学生在教师指导下尝试,并尝试成功。
教学目标:
1、理解溶解度概念。
2、了解温度对溶解度的影响。
3、了解溶解度曲线的意义。
教学器材:胶片、幻灯机。
一、复习引入。
问:不同物质在水中溶解能力是否相同?举例说明。
答:不同。例如食盐能溶于水,而沙子却极难溶于水。
问:那么,同种物质在不同溶剂中溶解能力是否相同?
答:不同。例如油易溶于汽油而难溶于水。
教师总结:
物质溶解能力不仅与溶质有关,也与溶剂性质有关。通常我们将一种物质在另一种物质中的溶解能力叫溶解性。
二、讲授新课。
1、理解固体溶解度的概念。
问:如何比较氯化钠、硝酸钾的溶解性大小?
生:分组讨论5分钟左右,拿出实验方案。
(说明:放给学生充足的讨论时间,并鼓励他们畅所欲言,相互纠错与补充,教师再给予适时的提示与总结。学生或许会凭感性拿出较完整的实验方案,意识到要比较氯化钠、硝酸钾溶解性大小,即比较在等量水中溶解的氯化钠、硝酸钾的多少。但此时大多数学生对水温相同,溶液达到饱和状态这两个前提条件认识不深刻,教师可引导进入下一次尝试活动。)。
问:
(1)为什么要求水温相同?用一杯冷水和一杯热水分别溶解氯化钠和硝酸钾,行不行?
(2)为什么要求水的体积相同?用一杯水和一盆水分别溶解,行不行?
(3)为什么要达到饱和状态?100克水能溶解1克氯化钠也能溶解1克硝酸钾,能否说明氯化钠、硝酸钾的溶解性相同?生:对上述问题展开积极讨论并发言,更深入的理解三个前提条件。
(说明:一系列讨论题的设置,充分调动了学生思维,在热烈的讨论和积极思考中,"定温,溶剂量一定,达到饱和状?这三个比较物质溶解性大小的前提条件,在他们脑海中留下根深蒂固的印象,比强行灌输效果好得多。)。
师:利用胶片展示完整方案。
结论:1、10℃时,氯化钠比硝酸钾更易溶于水。
师:若把溶剂的量规定为100克,则某温度下100克溶剂中最多溶解的溶质的质量叫做这种溶质在这个温度下的溶解度。
生:理解溶解度的涵义,并思考从上述实验中还可得到什么结论?
结论:2、10℃时,氯化钠的溶解度是35克,硝酸钾的溶解度是21克。
生:归纳溶解度定义,并理解其涵义。
2、根据溶解度判断物质溶解性。
师:在不同的温度下,物质溶解度不同。这样,我们只需比较特定温度下物质溶解度大。生:自学课本第135页第二段并总结。
3、溶解度曲线。
师:用胶片展示固体溶解度曲线。
生:观察溶解度曲线,找出10℃时硝酸钠的溶解度及在哪个温度下,硝酸钾溶解度为110克。
问:影响固体溶解度的主要因素是什么?表现在哪些方面?
答:温度。大多数固体溶解度随温度升高而增大,例如硝酸钠;少数固体溶解度受温度影响不大,例如氯化钠;极少数固体随温度升高溶解度反而减小,例如氢氧化钙。
一、说教材。
《物质的溶解性》是鲁教版初中化学九年级全一册第1单元第3节的内容。本节课主在前两节的基础上,定量研究溶质在一定量水中溶解的限度。本节包括溶解度和溶解度曲线两个方面的内容。在“溶解度”部分介绍了物质的溶解度与溶剂和温度的关系说明了物质在一定溶剂和温度下溶解量是有一定限度的,并以此得出了固体溶解度的概念。然后,探究溶解度曲线——包括回执溶解度曲线、分析和应用溶解度曲线、比较溶解度数据表和溶解度曲线的区别、体会列表法和作图法两种数据处理方法的不同作用等,引导学生体检数据处理的过程,学习数据处理的方法。最后,简单了解气体的溶解度、并结合有关汽水的讨论,说明气体的溶解度与压强和温度密切相关。
过渡:这是对教材的认识,下面说一下本班学生的情况。
二、说学情。
基于溶液在化学(科学)研究和生产、生活中有着广泛的应用,学生只定性地了解溶液的组成和基本特征是不够的,还应定量地认识溶液。本节以溶解度为核心,展开对溶液的定量研究。从定性研究到定量研究,知识内容上加深了,研究方法上要求提高了,对学生的能力要求提升了一个层次。在本节学习中所需的有关直角坐标系中曲线等数学知识,学习已经具备,一般不会造成学习障碍。学生可能会遇到的问题是:对溶解度概念的运用时忽略条件;对问题缺乏科学全面的分析而产生一些模糊或者错误的认识,例如认为饱和溶液一定是浓溶液,认为增加(或减少)溶剂的量,固态物质的溶解度也会随之增大(或减少);认为搅拌能使固态物质的溶解加快,也会使其溶解度增大;等等。
过渡:结合教材分析和学情分析,我制定了如下教学目标:
三、说教学目标。
初中数学教学设计教案篇七
(一)内容。
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析。
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析。
(一)教学目标。
1.理解不等式的概念。
2.理解不等式的解与解集的意义,理解它们的区别与联系。
3.了解解不等式的概念。
4.用数轴来表示简单不等式的解集。
(二)目标解析。
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析。
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析。
下一页更多精彩“初中一年级数学教案”
初中数学教学设计教案篇八
随着科学技术的发展,教育资源和教育需求也随之增长和变化。我校进行了初中数学分层教学课题研究,而分层次备课是搞好分层教学的关键,教师应在吃透教材、大纲的情况下,按照不同层次学生的实际情况,设计好分层次教学的全过程。本文将结合本人的教学经验,对分层教学教案设计进行初步探讨。
1教学目标的制定。
制定具体可行的教学目标,先要分清哪些属于共同目标,哪些属于层次目标。并在知识与技能、过程与方法、情感态度与价值观三个方面对不同层次的学生制定具体的要求。
2教法学法的制定。
制定教法学法应结合各层次学生的具体情况而定,如对a层学生少讲多练,注重培养其自学能力;对b层学生,则实行精讲精练,注重课本上的例题和习题的处理;对c层学生则要求要低,浅讲多练,弄懂基本概念,掌握必要的基础知识和基本技能。
3教学重难点的制定。
教学重难点的制定也应结合各层次学生的具体情况而定。
4.1情境导向,分层定标。教师以实例演示、设问等多种方法导入新课。要利用各种教学资料创设恰当的学习情境为各层学生呈现适合于本层学生水平学习的内容。
4.2分层练习,探讨生疑。学生对照各自的目标分层自学。教师要鼓励学生主动实践,自觉地去发现问题、探讨问题、解决问题。
4.3集体回授,异步释疑。“集体回授”主要是针对人数占优势的b层学生,为解决具有共性的问题而组织的一种集体教学活动。教师为那些来不及解决的、不具有共性的问题分先后在层内释疑即“异步释疑”。
5练习与作业的设计。
教师在设计练习或布置作业时要遵循“两部三层”的原则。“两部”是指练习或作业分为必做题和选做题两部分;“三层”是指教师在处理练习时要具有三个层次:第一层次为知识的直接运用和基础练习;第二、三两层次的题目为选做题,这样可使a层学生有练习的机会,b、c两层学生也有充分发展的余地。
分层教学下教师不能再“拿一个教案用到底”,而要精心地设计课堂教学活动,针对不同层次的学生选择恰当的方法和手段,了解学生的实际需求,关心他们的进步,改革课堂教学模式,充分调动学生的学习主动性,创造良好的课堂教学氛围,形成成功的激励机制,确保每一个学生都有所进步。
初中数学教学设计教案篇九
1、了解公式的意义,使学生能用公式解决简单的实际问题;。
2、初步培养学生观察、分析及概括的能力;。
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式、
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1、对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2、在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3、在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
(一)知识教学点。
1、使学生能利用公式解决简单的实际问题、
2、使学生理解公式与代数式的关系、
(二)能力训练点。
1、利用数学公式解决实际问题的能力、
2、利用已知的公式推导新公式的能力、
(三)德育渗透点。
数学来源于生产实践,又反过来服务于生产实践、
(四)美育渗透点。
二、学法引导。
1、数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点。
2、学生学法:观察分析推导计算。
三、重点、难点、疑点及解决办法。
1、重点:利用旧公式推导出新的图形的计算公式、
2、难点:同重点、
3、疑点:把要求的图形如何分解成已经熟悉的图形的和或差、
四、课时安排。
1课时。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
七、教学步骤。
(一)创设情景,复习引入。
板书:公式。
师:小学里学过哪些面积公式?
板书:s=ah。
(出示投影1)。解释三角形,梯形面积公式。
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课。
师:下面利用面积公式进行有关计算。
(出示投影2)。
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积s。
师生共同分析:
1、根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2、题中“m”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)。
学生口述解题过程,教师予以指正并指出,强调解题的规范性。
【教法说明】。
1、通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。
2、用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。
(出示投影3)。
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积。
学生讨论:
1、环形是怎样形成的、
2、如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。
评讲时注意:
1、如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。
2、本题实际上是由圆的面积公式推导出环形面积公式。
3、进一步强调解题的规范性。
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。
测试反馈,巩固练习。
(出示投影4)。
1、计算底,高的三角形面积。
3、已知圆的半径,,求圆的周长c和面积s。
4、从a地到b地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求a地到b地所用的时间公式。
(2)若千米/时,千米/时,求从a地到b地所用的时间。
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展、
八、随堂练习。
(一)填空。
1、圆的半径为r,它的面积________,周长_____________。
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积v,如果,v是多少?
九、布置作业。
(一)必做题课本第___页x、x、x第___页x组x。
(二)选做题课本第___页___组x。
初中数学教学设计教案篇十
。
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标。
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标。
通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点。
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
创设问题情景,激发学生的求知欲望,导入新课。
学生:26米。
教师:能写出算式吗?学生:……。
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题。
初中数学教学设计教案篇十一
1.使学生通过观察,初步理解简单的同分母分数加法的算理,并能正确计算.。
3.培养学生抽象概括与观察类推的能力.。
教学重点。
1.理解同分母分数加法的算理.。
2.会计算简单的同分母分数加法.。
教学难点。
理解同分母分数加法的算理.。
教学过程。
一、铺垫孕伏.。
复习旧知.。
(1)用分数表示图中涂色部分(投影)。
问:是几个?是几个?是几个?
(2)填空。
是4个是是个是个.。
(3)口算并说明计算理由.。
30+28056+6139+20。
二、探究新知.。
1.导入新授.。
这样的分数加法应该怎样计算呢?这节课我们就来学习简单的分数加法.。
(板书:简单的分数加法)。
2.教学例1.【演示课件简单的分数加、减法】。
(1)出示例1。
一张长方形纸,做纸花用去,做小旗用去,一共用去这张纸的`几分之几?
(2)分析数量关系,列出算式.。
教师板书:
教师提问:这道题应该怎样想呢?(演示动画分数加法例1)。
是2个,是1个,2个加上1个是3个,就是.因此。
(板书:)。
(3)计算并说出思考过程。
3.教学例2.【演示课件简单的分数加、减法】。
(1)(演示动画分数加法例2)。
提问:怎样列式?
(板书:)。
思考:得多少?你是怎么想的?
(2)教师出示图片,板书。
(3)再让学生说的思考过程.。
4.练习.。
(1)口答:
(2)计算并说思考过程.。
提问:1用分数怎样表示?(可表示为、、、)。
小结:可以根据我们的需要写成分子、分母相同的任意分数.。
三、随堂练习.。
1.填空。
(l)2个加上3个,是5个;就是。
(2)3个加上4个,是个,就是。
(3)2个加上7个是个,就是.。
2.判断正误,把不正确的改正过来.。
3.计算.。
4.一块皮子,做皮包用去这块皮子的,做皮鞋用去这块皮子的,一共用去这块皮子的几分之几?(列式计算,并说明理由.)。
四、课堂小结。
今天我们学习了同分母分数加法,你们发现了什么规律吗?
五、课后作业.。
文档为doc格式。
。
初中数学教学设计教案篇十二
一、说教材:
(一)教材分析:
(二)教学目标:
知识目标。
1.认识垂线,理解“互相垂直”和“垂足”的含义;
2.会用三角板或量角器过一点画一条直线(或射线、线段)的垂线;
3.知道垂线的性质:过一点有且只有一条直线垂直于已知直线。
能力目标。
1.培养学生的观察、理解能力,几何语言能力,画图能力,抽象思维能力;
2.培养学生动手操作能力和创造精神,运用知识解决实际问题能力,形成垂线的空间观念。
情感态度和价值观目标。
1.培养学生辩证唯物主义思想及勇于探索的精神;
2.培养学生的合作精神,进行集体观念的教育。
(三)教学重难点:
教学重点:垂线的概念、画法和性质;
教学难点:垂线的画法。
二、说教法、学法。
教法分析:
本课时我主要采用“启发引导式”的教学方法。
此方法是把学生的自主探索和教师的.有效而及时的组织、引导相结合。
学法指导:
本课时我引导学生用“自主探索、合作交流”的方法来学习。
关注学生在学习过程中的变化与发展。使学生在探索中创新,在实践中发展。
三、说教学过程。
设计理念:
摆正教师在课堂教学中的位置,落实学生的主体地位,尽可能地提供给学生较大的学习发展空间,引导学生在“做中学”,学生能学会的,教师不讲,学生的疑点也力争在教师的点拨和指导下突破。
精讲点:
1、渗透垂直定义既是判定也是性质及推理形式;
2、画线段的垂线时,延长线用虚线。
初中数学教学设计教案篇十三
这节课是人教版八年级第十八章第一节的内容,教学内容是勾股定理公式的推导、证明及其简单的应用。本节课是在学生已经掌握了直角三角形有关性质的基础上进行学习的,勾股定理是几何中最重要的定理之一,它揭示的是直角三角形中三条边之间的数量关系,将数与形密切联系起来,为以后学习四边形、圆、解直角三角形等数学知识奠定了基础。它有着丰富的历史背景,在数学的发展中起着重要的作用,在现实生活中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
知识与技能
探索勾股定理的内容并证明,能够运用勾股定理进行简单计算和运用
过程与方法
(1)通过观察分析,大胆猜想,探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
(2)在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学过程,并体会数形结合和从特殊到一般的思想方法。
情感态度与价值
(1)在探索勾股定理的过程中,培养学生的合作交流意识和探索精神,增进数学学习的信心,感受数学之美,探究之趣。
(2)利用远程教育资源介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
教学重点
探索和证明勾股定理 ·教学难点
用拼图的方法证明勾股定理
(学法)“引导探索法”
(自主探究,合作学习,采用小组合作的方法。
课件、三角板
教学环节1
(1) 你见过这个图案吗?
(2) 你听说过“勾股定理”吗?
学生活动:学生思考回答
设计意图:目的在于从现实生活中提出“赵爽弦图”,进一步激发学生积极主动地投入到探索活动中,同时为探索勾股定理提供背景材料。
教学环节2 教学过程:实验操作获取新知归纳验证完善新知
教师活动:出示课件,引导学生探索
学生活动:猜想实验合作交流画图测量拼图验证
设计意图:渗透从特殊到一般的数学思想。为学生提供参与数学活动的时间和空间,发挥学生的主体作用;让学生自己动手拼出赵爽弦图,培养他们学习数学的成就感。通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想,调动学生思维的积极性,激发学生探求新知的欲望。给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性。
教学环节3 教学过程:解决问题应用新知
教师活动:出示例题和练习
学生活动:交流合作,解决问题
设计意图:通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活,顺利解决如何将实际问题转化为求直角三角形边长的问题,培养学生的数学应用意识。
教学环节4 教学内容:课堂小结巩固新知布置作业
教师活动:引导学生小结
学生活动:讨论交流、自由发言
设计意图:既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
通过布置课外作业,给学生留有继续学习的空间和兴趣,及时获知学生对本节课知识的掌握情况,适当的调整教学进度和教学方法,并对学习有困难的学生给与指导。
勾股定理:如果直角三角形的两直角边分别为a和b,斜边为c,那么 a2+b2=c2。
如图,将长为10米的梯子ac斜靠在墙上,bc长为6米。
(1)求梯子上端a到墙的底端b的距离ab。
(2)若梯子下部c向后移动2米到c1点,那么梯子上部a向下移动了多少米?
1。收集有关勾股定理的证明方法, 下节课展示、交流。
2。做一棵奇妙的勾股树(选做)
初中数学教学设计教案篇十四
引导学生亲身体验探索过程(垂线性质1)。
联系中考,拓展延伸。
及时纠错,加深印象。
归纳总结,及时小结。
布置作业,分层练习。
指导预习定义:本节课的预习内容为“垂线的相关概念”,预习的原则是学生能学会的(概念性的内容),学生课前自学,预习的要求是识记并试着理解概念。目的是延伸课堂,环节前移,为课中重点知识的训练赢得时间。
亲身体验性质:
“列举生活中实例”
“折纸”
“画垂线”
垂线的性质1在同一平面内,过一点有且只有一条直线与已知直线垂直.
在学生出现问题时,也不是教师讲评,而是适时引导学生(画垂线要画直线,标垂直符号等学生确定不了,有的学生也知道不行,但不知道为什么的时候,我引导学生再次看教材,从教材中,寻找答案,而不是教师简单的告诉),方法的优劣也尽可能的让学生来评价,在保证科学的前提下,学生自己的方法才是最好的方法。在难点的突破上,给学生搭桥铺路、增台阶,越是难理解的东西,越是不能忽视体验的重要性。在画线段或射线的垂线时,提示学生应画所在直线的垂线安排画直线的垂线,直线画的不够长,学生很容易想到将其延长,随即又出示线段,产生疑问,引导学生再次从教材中寻找答案,将画线段垂线的问题转化成画直线垂线的问题,学生接着动手体验,交流修正。
联系中考:
考虑到学生之间的差异,解决学生“吃好”和“吃饱”的问题,关注基础,也不忘培优。通过几何画板动态演示,深入分析并进行拓展。
及时纠错:
及时查看学生练习情况,指出易错点,加深印象。
归纳总结:
分层作业:
四、自我总结:
认为自己做的比较好的地方就是更多的关注了学生,让学生多动手,把课堂还给了学生,并针对学生易错问题及时纠错。
做的不好的地方是个别环节的处理上,觉得指导学生课前预习,加之让学生自主探究应该能很好理解概念,得出结论,但在做题过程中还是出现了很多问题;另外,学生探索时间长了,练习时间就少了。这次做的课就是凭自己的想象而设计的,操作的过程又有诸多疏漏,肯定有很多不妥之处,希望各位领导和老师多提宝贵意见,给予指导。谢谢大家!

一键复制