总结是一种对事物逻辑关系的整理和概括,可以让我们更好地理解问题。总结应该是对过去工作的一种客观评价,可以提出不足之处并给出改进的建议。以下是一些学习方法总结,供大家参考和应用到自己的学习中。
北师大版的倍数的特征教学设计篇一
教学目的:
1、结合教材提供的具体情境,认识自然数和整数,并联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
3、学生经历认识倍数和因数的含义,能对生活中有关的数字作出合理的解释。
4、在教师的帮助下,初步学会选择有用的信息进行简单地归纳与类比,发展合情推理能力。
5、在老师、同学的帮助下,对身边与数学有关的某些事物有好奇心,参与数学活动。
6、体验数学与日常生活密切联系。
教学重点:
探究因数与倍数。
教学难点:
倍数与因数的关系的理解。
教具准备:
实物投影仪等。
教学过程:
一、创设情境,导入新课。
1、导入谈话。
师:我们生活在一个充满数的世界里。
板书课题:数的世界。
2、呈现情境图。(略)。
二、组织活动,探索新知。
(一)活动一:看一看:
1、师问:图中有哪些数?谁愿意扮演小小售货员介绍一下水果的价格?
(1)说给你的同桌听听。
(2)指名汇报。
2、你知道这些表示水果的价格的数,分别是什么数呢?
(3.6和5.8是小数,6和4是整数。)。
3、问:我买5千克梨,需要多少钱?(生答:4×5=20(元))。
(二)活动二:试一试:
1、看书自学什么是自然数和整数。
(1)指名说说什么是自然数,什么是整数。
(2)同桌俩人一人说一个数。
(3)师:任意说一个数,学生判断它是什么数?
2、自学什么是因数和倍数?
问:在什么范围内研究倍数和因数呢?
3、师任意写一个乘法算式,先判断符合倍数和因数的范围吗?再判断()是()的因数,()是()的倍数。
(三)活动三:说一说。
1、根据算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
(1)同桌俩人一人说一人判断。
(2)指名汇报。
25×3=7514×6=8420×5=100。
(四)活动四:找一找:
下面哪些数是7的倍数?
14172577。
(1)师:用什么方法来判断这些数是不是7的倍数呢?
(2)生答:14÷7=214是7的倍数。
17÷7=2……3,17不是7的倍数。
(五)活动五:练一练:
1、你写我说:
45×2=9045和2是90的因数,
90是45和2的倍数。
(同桌2人,一人写算式,一人说倍数和因数。)。
2、看谁找得快。
(1)24691218203048。
师问:先找哪些是4的倍数?
再找哪些是6的倍数?
哪些数既是4的倍数、又是6的倍数?
(2)请写出100以内全部6的倍数。
师:100以内6的倍数的个数是有限的还是无限的?如果不限制在100以内呢?
你发现6的最小的倍数是几呢?能找到最大的6的倍数吗?
三、总结。
师:通过这节课的学习,你有了什么收获?
板书设计:
数的世界。
我买5千克梨,需要多少钱?
4×5=20(元)。
答:需要20元钱。
先找哪些是4的倍数?再找哪些是6的倍数?哪些数既是4的倍数、又是6的倍数?
4的倍数:4122048。
6的倍数:612183048。
既是4的倍数、又是6的倍数:1248。
教学内容:书4-5页。
教学目的:
1、经历探索2,5的倍数特征的过程,理解2,5的倍数的特征,能正确判个数是不是2或5的倍数。
2、知道奇数、偶数的含义,能判断一个数是奇数或偶数。
3、在观察、猜测和小组合作学习讨论的过程中,提高探究问题的能力。
教学重点:
理解2、5的倍数的特征。
教具准备:
0-9的数字卡片、信封等。
北师大版的倍数的特征教学设计篇二
教学过程:
一、复习引入,预习反馈:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生反馈你们还见过哪些轴对称图形?
(3)反馈轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1。
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
三、教学画对称图形。
例题2:
(1)引导学生思考:
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
1、课内练习一-----第1、2题。
2、课外作业:找出下图的对称轴。
板书设计:
轴对称。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
北师大版的倍数的特征教学设计篇三
教学目标:
探索2、5倍数的特征,初步理解奇数、偶数的概念。
教学重点:
发现2、5倍数的特征并灵活运用。
教学过程:
一、导入新课。
(学生认真看表演情况。)。
二、探究新知。
1、活动一:师:从图中你们知道了哪些信息?还能提出什么问题?
学生观察情境图,说出自己通过观察发现的信息,提出问题,全班交流。
2、活动二:师:我们首先解决“各项表演分别可以选派几人参加”这个问题。请你们想一想,每个方队得人数有没有规律?到问题时要仔细分析、验证,不能轻易下结论。
3、活动三;
师:在1—100的自然数中,2的倍数有那些?5的倍数有哪些呢?3的倍数有哪些呢?先独立思考,然后小组讨论。
学生自主思考后,可能采用无序排列、有序列举、在百数表中圈出或涂色等解决问题的方法。
4、活动四。
师:像2、4、6、8、10、12……都是偶数,1、3、5、7、9、11……都是奇数。
师:你能再说出几个偶数、奇数的例子。
学生认真听讲。
学生举例,相互交流。
三、课堂练习。
自主练习第1、2题。学生自主练习,教师巡视指导,全班交流。
第3题数学游戏:应用今天学到的知识,看数字卡片说一句话。如:20是偶数,是2的倍数,同时也是5的倍数等。同位两人轮流出卡片,参与游戏。
四、课后小结。
师:请同学们说一说这节课你学到了些什么?还有什么问题?你对自己有什么评价?
北师大版的倍数的特征教学设计篇四
教学过程:
一、揭示课题:
师:这一节课,老师要带领全体学生进行探索活动,探索的知识是“2、5的倍数的特征”。
二、探索活动。
(一)活动一:想一想:
1、问:5的倍数有什么特征?在下表找出5的倍数,并做上记号。
(1)师:读一读5的倍数,观察它们有那些特征?
(2)同桌互相说一说5的倍数的特征。给5的倍数做记号。
(3)指名汇报:我的发现:个位是0或5的数都是5的倍数。
2、根据5的倍数的特征判断5的倍数:
师:任意说一个数,学生用抢答的形式来判断。
(二)活动二:试一试:
1、在下面数中圈出5的倍数。
2845538075348995。
汇报:你是怎样判断的?
2、在上面表格中找出2的倍数,做。
上记号,说一说这些数有什么特征。
3、自学什么叫偶数,什么叫奇数?
(生答:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。)。
你说我答:(同桌一人说数,一人判断。)。
你任意说一个数,我来判断是奇数还是偶数?
(三)活动三:练一练:
1、把下列数按要求填入圈内。
28354055108495785390。
(1)说一说2的倍数有什么特征?5的呢?
(2)填一填:2的倍数有哪些?
5的倍数有哪些?
哪些数既是2的倍数、又是5的倍数?
(2的倍数有:284010847890。
5的倍数有:354055109590。
既是2的倍数、又是5的倍数:4090)。
(1)师:你是怎样判断的?可以不用计算吗?为什么?
(2)生答:根据2和5的特征来判断,85的个位不是偶数所以不能装完,85的个位是5,所以能装完。
(四)活动四:数学游戏:
1、每人准备:0-9的数字卡。
2、师说要求,生摸。
问:摸出几可以和“5”组成2的倍数。
摸出几可以和“5”组成5的倍数?
3、同桌合作:
一人说要求,一人按要求摸数。
三、总结。
谁能谈谈通过这节课的学习,你有什么感受?
板书设计:
个位上是0或5的数是5的倍数。
个位上是0、2、4、6、8的数是2的倍数。
2的倍数有哪些?5的倍数有哪些?哪些数既是2的倍数、又是5的倍数?
2的倍数有:284010847890。
5的倍数有:354055109590。
既是2的倍数、又是5的倍数:4090。
北师大版的倍数的特征教学设计篇五
“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的`三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
文档为doc格式。
北师大版的倍数的特征教学设计篇六
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
教学难点:
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验。
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)。
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)。
二、学习新知。
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)。
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)。
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)。
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
三、练习巩固。
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结。
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
北师大版的倍数的特征教学设计篇七
教学内容:
教学目的:
1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
教学重点:
理解3的倍数的特征。
教学难点:
教具准备:
实物投影仪、数字卡片等。
学具准备:
每人几张数字卡片。
教学过程:
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
板书课题:3的倍数的特征。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)。
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1)自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。
361754714548。
(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获?
板书设计:
1、在下面数中圈出3的倍数。
284553873665。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
北师大版的倍数的特征教学设计篇八
1、一个自然数不是奇数就是偶数()。
2、最小偶数的两位数是12.()。
3、同时是2、5倍数的数的个位上的数一定是0.()。
填空。
1、是2的倍数的最小的三位数是(),
最大的三位数是().
2、是5的倍数的最小的两位数是(),
最大的两位数是().
选择。
1、()的数是偶数.
a.个位上是1、3、5、7、9。
b.个位上是0、2、4、6、8。
2、任何奇数加1后().
a.一定是2的倍数。
b.不是2的倍数。
c.无法判断。
4、一个奇数相邻的两个数().
都是奇数。
b.都是偶数。
c.一个是奇数,一个是偶数。
5、两个偶数的和().
a.一定是偶数。
b.可能是偶数。
c.可能是奇数。
6、选出3个是5的倍数的奇数().
a.10、20、30b.15、25、35。
c.10、15、20。
北师大版的倍数的特征教学设计篇九
教学内容:
教学目的:
1、通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
教学重点:
教学难点:
探索活动中,发现规律,并归纳出3的倍数的特征。
教具准备:
实物投影仪、数字卡片等。
学具准备:
每人几张数字卡片。
教学过程:
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
二、探索交流、获取新知。
(一)活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)。
1、在书上第6页的表中,找出3的倍数,并做上记号。
(先独立完成,看谁找的快?)。
2、观察3的倍数,你发现了什么?
教师参与到讨论学习中。
先独立思考,想出自己的想法。
然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。
生3:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。
(1)自己先找几个数试一试。
(2)然后在小组内说说你验证的结论。
(三)活动三:试一试。
在下面数中圈出3的倍数。
284553873665。
(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。
361754714548。
(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。
(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获?
板书设计:
1、在下面数中圈出3的倍数。
284553873665。
2、选出两个数字组成一个两位数,分别满足下面的条件。
3045。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。

一键复制