教案应当注重反思和改进,及时调整和完善教学计划。教案的编写须符合教学大纲和教材的内容要求。以下是小编为大家整理的教案范例,供大家参考。希望通过这些范例,可以帮助大家更好地理解和掌握教案的编写方法与技巧,提高教学效果。大家一起来看看吧!
长方体和正方体教案人教版篇一
课题三:
教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点理解底面积。
教学用具投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
长方体和正方体教案人教版篇二
教学目标:
知识与技能:
经历对长方体和正方体的知识系统化的整理,加深对长方体正方体的形体特征的认识,分清表面积和体积的概念,能熟练地掌握形体的表面积和体积(容积)的计算,解决一些实际问题。
解决问题:
初步学会用形体知识提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展学生应用意识、实践能力与创新精神。
情感与态度:
通过解决实际问题,让学生感受到数学与生活的密切相关,使学生形成积极参与数学教学活动,并积极与人合作获得成功的体验,树立学好数学的信心与勇气。
教学过程:
一、假设问题情境,激发学习兴趣。
开展生生之间、师生之间对话,教师要引导注意安全与游泳前的准备运动等等的相关的内容。
指名学生回答,也可让学生小组讨论交流后反馈,由学生各抒己见。教师要注意凡学生提出的问题都要给于一定的评价性的肯定,同时要注意正确思想的引导。
二、自主合作整理,构建知识网络。
让学生每四人一组小组动手合作列出知识纲要。
小组的成果开展反馈并给于展示(可借投影仪)。
三、综合应用知识,解决实际问题。
师述:现在在请你们为学校设计建游泳池的方案?
你们认为建游泳池要解决哪些问题呢?
学生讨论说一说。
出示教师的几个问题:
(1)游泳池的长宽高各是多少米?
(2)池占地多大?
(3)挖出多少的土?
(4)池内的四周和底部用什么铺,要铺多大的面积?
(5)要放入多少的水?
小组反馈合作的结果。
四、开展激励评价,体验成功喜悦。
师述:你们说一说哪种好呢?
第9课时实践活动粉刷围墙。
教学目标。
1、让学生经历粉刷围墙的实践活动,巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用。
2、在引导学生准备测量、明确分工、解救问题的过程中,培养学生的合作意识,提高学生收集、整理、分析信息的能力。
3、在利用数学知识制定方案的过程中,体验数学知识与生活的紧密联系,并利用数学知识科学地知道生活,感受成功。
教学重点。
整理分析和比较信息,制定方案。
教学难点。
策略多样化后的优化策略。
教学过程。
一、情境再现,激趣导入。
师:(课件出示围墙的污点和裂缝)大家看到这些图片想说些什么?(生争相发言)老师听出来大家都根热爱我们的学校,看来粉刷围墙势在必行。这节课我们一定要拿出一份可行的方案,解决这个问题。(板书题目:粉刷围墙)。
二、集体规划,确定步骤。
1、确定研究步骤。
作为粉刷围墙工作的小工程师,你认为应分哪几步去完成这项工作呢?(生回答)。
2、根据学生回答,教师引导学生确定研究步骤。
(1)调查相关数据信息(包括粉刷面积、涂料费用、人工费用等)。
(2)选择信息综合计算,得出粉刷草案。
(3)整理研究结果,呈现出书面粉刷方案。
三、引导学生汇报课前调查情况。
师:课前各组已经分头去调查了相关的粉刷信息,请大家以组为单位汇报搜集到的信息,其他小组有不同意见可以互相补充。
1、分组汇报。
(1)调查粉刷面积的小组汇报调查结果,明确围墙的长、高,并汇报计算面积的准确过程。
(2)调查涂料价目的小组汇报外墙涂料价目调查情况。
(3)调查人工费用的小组汇报人工费用调查情况。
2、指导学生计算人工费用及涂料数量。
(1)学生独立计算人工费用及涂料数量。
(2)集体订正。
四、小组合作,制订粉刷方案。
涂料型号不同,价格也不同,到底该选择哪种涂料?一共要花多少钱?怎样做才能有实用有美观呢?请各小组同学合作,拿出你们认为最好的粉刷计划。
1、小组合作综合分析。
2、小组为单位进行汇报,体现策略多样化,展示学生的多种方案。
3、优化选择。
4、学生独立计算买已选涂料粉刷一共需要的费用。
5、书面整理并呈现粉刷围墙的方案。
6、对方案的润色和个性化设计。
五、课外延伸,完美计划。
六、全课总结,感受成功。
长方体和正方体教案人教版篇三
教学目标。
知识与技能。
(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。
(2)提高学生综合运用知识的能力,发展学生的空间观念。
过程与方法。
(2) 通过解决实际问题加深对所学知识的理解。
情感态度与价值观。
(1)体验合作探究的乐趣。
(2)感受数学与现实生活的密切联系,发展学生的思维。
教学重点 理解底面积的含义,统一公式的推导。
教学准备 课件。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v = sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
旁批:
后记:
长方体和正方体教案人教版篇四
教学内容。
教材第33~34页内容及例1。
教学目标。
知识与技能。
(1)理解长方体和正方体表面积的意义。
(2)理解并掌握长方体表面积的计算方法。
(3)发展学生的空间观念。
过程与方法。
(1)经历长方体表面积的计算方法的探究过程。
(2)通过合作探究培养学生的抽象概括能力、推理能力,发展学生的空间观念。
情感态度与价值观。
(1)培养数学与生活的联系,激发对数学学习的兴趣。
(2)体验合作探究的乐趣。
教学重点 长方体、正方体表面积的意义和长方体表面积的计算方法。
教学难点 确定长方体每一个面的长与宽。
教学准备 长方体和正方体表面积展开的教具、视频展示台。学生准备长方体和正方体纸盒各一个。
教学过程。
一、创设情境。
1、说出长方形面积的计算公式。
2、看图回答。
(1)指出这个长方体的长、宽、高各是多少?
(2)哪些面的面积相等?
(3)填空:
上、下两个面的长是 宽是 。
这个长方体 左、右两个面的长是 宽是 。
前、后两个面的长是 宽是 。
3、想一想。长方体和正方体都有几个面?
二、实践探索。
1.个别学习-------表面积的概念。
(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。
(2)沿着长方体和正方体的棱剪开并展平。
(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?
学生试着说一说。
2.小组合作学习-------计算塑料片的面积。
(1)想:这个问题,实际上就是要我们求什么?
使学生明确:就是计算这个长方体的表面积。
(2)学生分组研究计算的方法。
(3)找几名代表说一说所在小组的意见。
解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)。
6×5×2+6×4×2+5×4×2。
=60+48+40。
=148(平方厘米)。
解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)。
(6×5+6×4+5×4)×2。
=74×2。
=148(平方厘米)。
(4)比较上面两种解法有什么不同?它们之间有什么联系?
三、课堂实践。
做第26页的“做一做”,学生独立列式算出后集体订正。
四、课堂小结。
你发现长方体表面积的计算方法了吗?
结论:
=长×宽×2+长×高×2+宽×高×2。
长方体的表面积。
=(长×宽+长×高+宽×高)×2。
五、课堂练习。
做练习六的第1、2题,学生口答,学生讲评。
六、课后实践。
做练习六的第3、4题在作业本上。
旁批:
后记:
长方体和正方体教案人教版篇五
教学目标。
知识与技能。
(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。
(2)提高学生综合运用知识的能力,发展学生的空间观念。
过程与方法。
(2)通过解决实际问题加深对所学知识的理解。
情感态度与价值观。
(1)体验合作探究的乐趣。
(2)感受数学与现实生活的密切联系,发展学生的思维。
教学重点理解底面积的含义,统一公式的推导。
教学准备课件。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v=sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。
旁批:
后记:
长方体和正方体教案人教版篇六
2.培养学生的观察能力、操作能力及分析综合和抽象概括的能力,发展空间观念.。
教学重点。
掌握长方体的特征,认识长方体的长、宽、高.。
教学难点。
初步建立“立体图形”的概念,形成表象.。
教学过程。
一、复习引入.。
1、教师谈话:我们已学过一些几何图形,你们还记得是哪些吗?
(长方形、正方形、三角形、平行四边形和梯形)。
2、出示下面的实物.。
教师提问:这些物体是什么形状的呢?
引入:这一单元我们要继续深入研究长方体和正方体,今天先学习对长方体的认识.。
(板书课题:长方体的认识)。
二、学习新课.。
在日常生活中,你还见过哪些物体的形状是长方体的?(学生举例)。
(一)认识长方体的面.。
1、教师演示告诉学生什么是长方体的面,并让学生摸一摸.。
2、让学生按照前、后、上、下、左、右的顺序,数一数长方体共有几个面.再观察每个面都是什么形状的.(板书:长方体有6个面,6个面都是长方形.)。
3、提问:6个面中有没有不都是长方形的情况呢?
(板书:也可能有两个相对的面是正方形)。
4、提问:长方体的6个面还有什么特征呢?(板书:相对的面完全相同)。
(二)认识长方体的棱.。
1、让学生摸一摸长方体两个面相交的地方,说明这叫长方体的棱.。
2、让学生把直尺放在棱上,发现直尺平平的.说明棱是直的,是线段,可以度量.。
3、提问:长方体有多少条棱?想一想,怎样数才能做到不重复,不遗漏?
引导学生把棱分成三组,也可用同一颜色把每组互相平行的棱标出来.数出每组各有4条棱,有3组,一共有12条棱.(板书:有12条棱)。
4、让学生量一量每组中棱的长度,说一说发现了什么?
(板书:互相平行的4条棱的长度相等)。
5、总结特征:有12条棱,互相平行的4条棱的长度相等。
(三)认识长方体的顶点.。
1、让学生摸一摸长方体三个面相交的地方,说明这叫长方体的顶点.。
2、数一数长方体有几个顶点.(按照一定的顺序数)。
(板书:有8个顶点)。
(四)总结长方体的特征.。
(五)认识长、宽、高.。
出示长方体框架,引导学生观察并回答:
1、长方体的12条棱可以怎样分组?每组棱的长度有什么关系?
(分3组,每组4条棱长度相等)。
2、相交于一个顶点的棱有几条?它们的长度有什么特点?
(3条棱,3条棱的长度不相等.)。
4、指导学生理解长、宽、高的概念.。
(六)教学识图,发展空间观念.。
1、让学生把长方体学具放在课桌左上角,引导学生观察,并提问:你们能看到几个面?
2、教师启发提问:怎样用图表示出来呢?可同时板书画图.。
文档为doc格式。
长方体和正方体教案人教版篇七
教学目标:。
3、能较灵活地运用所学知识解答简单的实际问题;
教学设想:。
一.创设情境,引入新知。
1.谈话。
师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。
多媒体:相册。
2.引题。
师:你能说说什么是长方体的表面积呢?
二.实践操作,探究方法。
1.提出问题。
师:长方体的表面积和什么有关呢?
师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。
2.分组合作进行计算。
3.小组讨论并把算式贴在黑板上:
方法一:30×28×2+30×5×2+28×5×2。
方法二:(30×28+30×5+28×5)×2。
4.在完整解答过程中要注意什么?注意写“解”,单位。
5.小结:计算长方体的表面积一般有哪几种方法?
(根据总结,演示多媒体)。
6.练习:
师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。
出示几份学生计算物体的表面积:
(1)餐巾纸盒。
问:求餐巾纸盒的表面积有什么用呢?
(2)大橱。
问:求大橱的表面积有什么用呢?
7.出示课题:
师:今天这节课我们探讨了什么问题呢?
8.这里有个长方体,看看哪个算式是正确的?
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。
a.2×7×2+6×7×2+6×2。
b.(2×7+2×6+6×7)×2。
c.2×7+2×6+6×7。
(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )。
a.(1×1+1×3+1×3)×2。
b.1×1×2+1×3×4。
c.1×1×2+1×4×3。
问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。
师:先说说1×1×2+1×3×4有什么道理?
(多媒体演示)。
师:那1×1×2+1×4×3有什么道理呢?
生:1×1×2求的是上下底的面积,正方形的边长就是长方形的宽。1×4就是4个长方形拼成的大长方形的长,×3就是大长方形的面积。
(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )。
a.4×4×4 。
b.(4×4+4×4+4×4)×2。
c.4×4×6。
问:为什么第3个答案也是正确的?
(多媒体演示)。
9.问:这节课你掌握了哪些本领?
完整板书:和正方体。
三.巩固练习:
(小组讨论)。
生:计算的结果是能做成的。
生:6×6=36(平方分米)。
(4×1.5+4×2+2×1.5)×2=34(平方分米)。
师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。
(教师演示)。
问:不够了,为什么会不够呢?
问:那怎么办?
生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。
师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。
四、课后拓展练习:
多媒体出示:一个火柴盒。
师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。
五、课堂小结。
长方体和正方体教案人教版篇八
教学目标:
1、通过实物认识长、正方体,通过学生的观察、对比、小组讨论,了解长、正方体的特点。
2、在操作中认识长、宽、高和正方体的棱长。
3、培养学生的空间想象能力和空间观念。
教学重难点:
通过实物认识长、正方体,了解长(正)方体的特征。
教学过程:
一、复习提问。
请同学们回忆一下,我们已经学过哪些平面图形?长方形和正方形各有什么特征?这两种平面图形之间有什么关系?我们以前学过的这些图形都是平面图形,今天我们要认识两种立体图形——长方体和正方体。(板书课题:长方体和正方体的认识)。
二、探究新知。
(一)新课引入:指着各种形体的教具提问,哪些物体的形体是长方体?请学生把长方体挑出来。在日常的生活中你还见过哪些物体的形状是长方体的?学生举例。我们为什么把这些形状称做长方体呢?长方体有什么特征呢?下面我们一起来研究。
(二)认识长方体。
1.教师拿出火柴盒的模型,说明面、棱和顶点。
2.学生拿学具小组讨论,并出示小组讨论提纲,同时讨论后填写操作实验报告。
面棱顶点长方体数量形状大小数量长度数量位置。
(1)探究完成实验报告。
(2)汇报讨论结果。
(3)认识长方体的长、宽、高。
4.引导学生指出自己手中学具的长、宽、高,改变学具的位置,在指出长、宽、高。向学生说明长、宽、高根据长方体所摆的位置不同而改变。
5.练习:要求根据特征判断下面图形是不是长方体?并说出长方体立体图形的长、宽、高是多少厘米。
(教具)。
(三)认识正方体。
1.学生找出正方体实物来独立观察,观察后按提提纲独立回答问题,独立填写实验操作报告。独立观察提纲:
(2)摸一摸,正方体有多少条棱?它们的长度相等吗?
(3)找一找,正方体有几个顶点?独立填写实验操作报告:面棱顶点正方体数量形状大小数量长度数量位置1.班集体讨论,订正学生独立完成的实验报告,并完成教师板书,注意启发学生自己总结正方体的特征2.比较长方体和正方体有何异同?相同点:6个面、12条棱、8个顶点。不同点:形状、大小、长短不同,正方体有6个面都是正方形,面积都相等,12个棱长都相等。3.引导学生认识长、正方体的关系:
(四)新课小结。
这结课我们学习了什么内容?你还有什么问题?
三、看书质疑(略)。
四、巩固练习。
(1)长方体和正方体都有6个面,12条棱,8个顶点。()。
(2)长方体的六个面都是长方形。()。
(3)正方体是由六个正方形组成的图形。()。
(4)正方体是特殊的长方体。()。
长方体和正方体教案人教版篇九
1.1知识与技能:
(2)在理解和推导长方体和正方体表面积的计算方法的过程中,培养抽象概括能力、推理能力和思维的灵活性,同时发展空间观念。
1.2过程与方法:
1.3情感态度与价值观:
培养学生的分析能力,发展学生的空间观念。
教学重难点。
2.1教学重点:
建立表面积的概念以及理解并掌握长方体表面积的计算方法。
2.2教学难点:
根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。
教学工具。
课件、题卡。
教学过程。
一、复习引入。
(一)填空。
1、长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
2、在一个长方体中,相对的面完全相同,相对的棱长度相等。
3、正方体是由6个完全相同的正方形围成的立体图形。
(二)。
(2)计算各长方体中右侧面的面积。3×2=6(平方厘米)。
(3)计算各长方体中上面的面积。4×3=12(平方厘米)。
二、新知探究。
生1:我发现原来的立体图形变成了平面图形。
生2:我发现长方体的外表展开后是由6个长方形组成的。
生1:我发现正方体展开后也变成了平面图形。
生2:我发现正方体的外表展开后是由6个正方形组成的。
生1:长方体或正方体的表面积就是指长方体或正方体外表的面积,也就是上下、前后、左右六个面的面积和。
生2:简单地说就是长方体或正方体六个面的总面积,叫做它的表面积。
4、探索活动:
上、下每个面,长_0.7米__,宽_0.5米__,面积是_0.35平方米___;。
左、右每个面,长__0.5米_,宽__0.4米_,面积是___0.2平方米____。
教师温馨提示:
前后两个面大小相等,它是由长方体的----和----作为长和宽的;。
左右两个面大小相等,它是由长方体的----和----作为长和宽的.
教师温馨提示:
分别求出相对面的面积,再相加。
小组交流:集体研讨:
学生归纳,老师板书:
长方体表面积:长×宽×2+长×高×2+高×宽×2。
或:(长×宽+长×高+高×宽)×2。
5.出示例1。
学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
生1:先算3个不同面的面积和再乘2。
(0.7×0.5+0.7×0.4+0.5×0.4)×2。
生2:先分别求出两个相对面的面积和,再相加。
0.7×0.5×2+0.7×0.4×2+0.5×0.4×2。
所以长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示s=2(a×b+a×h+b×h)。
想:求至少用多少平方厘米的硬纸板,就是要求什么?自己试一试!
(6.5×6.5+6.5×6.5+6.5×6.5)×2。
=(42.25+42.25+42.25)×2。
=42.25×3×2。
=253.5(平方厘米)。
因为正方体的特性所以:
6.5×6.5×6。
=42.25×6。
=253.5(平方厘米)。
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
正方体表面积=棱长×棱长×6,用字母表示:s=6a2。
三、巩固提升。
1、计算下列图形的表面积。(单位:厘米)。
(15×12+15×8+12×8)×2=792(平方厘米)。
(18×9)×4+(9×9)×2=810(平方厘米)。
25×25×6=3750(平方厘米)。
10×10×6=600(平方厘米)。
1.2×1.2×6=8.64(平方分米)8.64×1.5=12.96(平方分米)。
答:包装这个礼品盒至少用12.96平方分米的包装纸。
3、一个玻璃鱼缸的形状是正方体,棱长3dm。制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖。)。
3×3×5=45(平方分米)。
答:制作这个鱼缸时至少需要玻璃45平方分米。
0.75×0.5+0.5×1.6×2+0.75×1.6×2。
=0.375+1.6+2.4。
=4.375(平方米)。
答:至少需要用布4.375平方米。
课后小结。
本节课学习了什么?
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示s=2(a×b+a×h+b×h)。
正方体表面积=棱长×棱长×6,用字母表示:s=6a2。
板书。
例1:做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
(0.7×0.5+0.7×0.4+0.5×0.4)×2。
=0.35×2+0.28×2+0.2×2。
=0.7+0.56+0.4。
=1.66(m2)。
6.5×6.5×6。
=42.25×6。
=253.5(平方厘米)。
答:制作这个墨水盒至少需要253.5平方厘米的硬纸板。
长方体的表面积=(长×宽+长×高+宽×高)×2,用字母表示s=2(a×b+a×h+b×h)。
正方体表面积=棱长×棱长×6,用字母表示:s=6a2。
长方体和正方体教案人教版篇十
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学过程。
一、创设情境。
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
4 3 1。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
结论:长方体的体积=长×宽×高。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
2.小组学习--正方体体积的计算。
结论:正方体的体积=棱长×棱长×棱长。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结。
五、课后实践。
做练习七的第5、7题。
长方体和正方体教案人教版篇十一
1.通过观察、操作等活动,认识正方体,掌握正方体的特征。
3.通过学习活动培养操作能力和合作意识,发展空间观念。
教学重难点。
学习重点掌握正方体的特征,理清长方体和正方体的关系。
学习难点建立立体图形的概念,形成表象。
教学工具。
ppt课件正方体模型学具准备:正方体纸盒小正方体若干个。
教学过程。
一、复习导入,引入新课。6分钟)。
1.课件出示长方体,请学生用语言描述长方体的特征。
2.看上图,说出这个长方体的长、宽、高各是多少厘米。
3.引导学生想象导入新课。
当这个长方体的长、宽、高都相等时,这个长方体变成了什么?
4.像这样由6个完全相同的正方形围成的立体图形就是正方体。(板书课题)这节课我们就来学习和研究正方体。
二、运用旧知的迁移,概括正方体的特征。(13分钟)。
1.引导学生回忆上节课是从哪几个方面研究长方体的特征的。(板书:面、棱、顶点)。
课件出示例3。
2.组织学生根据正方体实物尝试自主探究正方体的特征。
3.对正方体的特征进行总结。
1.引导学生讨论:长方体和正方体有什么相同点和不同点?指导学生填写记录单。(教师巡视指导)。
学案。
1.先回忆上节课所学的知识,然后从面、棱和顶点三个方面来汇报长方体的特征。
2.拿出准备好的正方体纸盒,从面、棱和顶点三个方面有目的地观察、讨论正方体有什么特征。把自己的发现记录下来。
3.在小组内选一个代表汇报观察、讨论的结果,全班进行总结并汇报。
面:6个(都是正方形),每个面完全相同,面积都相等。
棱:12条,每条棱的长度都相等。
顶点:8个。
1.对照长方体和正方体模型,从面、棱和顶点三个方面进行区分,在小组内交流自己的想法,填写记录单。
2.通过讨论得出:正方体是特殊的长方体。
3.动手操作,交流后展示成果。
四、巩固提升。(8分钟)。
1.完成教材第20页“做一做”。
2.完成教材第21页第6题。
五、课堂总结。(3分钟)。
1.今天这节课,大家有什么收获?
2.布置作业。
课后小结。
本节课的教学是在学生学习了长方体有关知识的基础上进行的。基于学生已具有概括长方体特征的能力,因此,本节课在探究正方体的特征时,着重让学生自主探究和归纳整理。让学生在小组活动和实践操作中,通过“看、摸、量、数、比”等活动丰富对正方体的感知,形成表象,掌握正方体的基本特征,从而发展学生的空间观念。
本节课的教学特点体现在:1.在复习长方体的特征后,让学生把学习长方体的特征方法迁移到学习正方体的特征上来,使学生又快又好地掌握了正方体的特征。2.把猜想和探索实践紧密结合,既可以激发学生的探索精神,又让他们享受猜想的成功体验,更好地发挥他们的创造力,同时“长方体和正方体的联系与区别”的问题也就迎刃而解了。
课后习题。
1.填一填。
(1)长方体有()个面,它们一般都是()形,也可能有()个面是正方形。
(2)长方体的上面和下面、前面和后面、左面和右面,面积分别()。
(3)长方体的12条棱,每相对的()条棱为一组,12条棱可以分成()组。
答案:(1)6长方2。
(2)相等(3)43。
2.填一填。
(1)正方体是由6个()围成的立体图形。
(2)因为正方体是长、宽、高都()的长方体,所以正方体是()的长方体。
(3)一个正方体的棱长是2.5cm,它的棱长总和是()。
(4)用一根长24cm的铁丝焊成一个最大的正方体框架,这个框架的每条棱长是()。
答案:(1)正方形(2)相等特殊(3)30cm(4)2cm。
3.在一个长方体中,最多有()个面是正方形。
答案:2。
4.解决问题。
(1)一个正方体的棱长是8cm,它的棱长总和是多少厘米?
答案:(1)8×12=96(cm)。
(2)48÷4-5-4=3(cm)。
板书。
(1)正方体是由6个完全相同的正方形围成的立体图形。
(2)正方体有12条棱,12条棱的长度都相等。
(3)正方体有8个顶点。
长方体和正方体教案人教版篇十二
教学内容:
教学目标:
3.培养学生分析能力,发展学生的空间概念。
教学重点:
教学难点:
教具运用:
教学过程:
一、复习导入。
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出上、下、前、后、左、右六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出上、下、前、后、左、右六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
0.70.4+0.70.4+0.50.4+0.50.4+0.70.5+0.70.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。
0.70.42+0.50.42+0.70.52=0.7+0.56+0.4=1.66(m2)。
方法三:(上面的面积+前面的面积+左面的面积)2。
(0.70.4+0.50.4+0.70.5)2=0.832=1.66(m2)。
(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业。
1.完成教材第23页做一做。
2.完成教材第24页做一做。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结。
板书设计:
长方体和正方体教案人教版篇十三
在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。
教学及训练。
重点。
理解底面积。
仪器。
教具。
投影仪。
教学内容和过程。
教学札记。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由确定的。
(2)长方体的体积=。
(3)正方体的体积=。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的.体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:v=sh。
三、巩固练习。
1.做第20页的“练一练”。学生独立做后,学生讲评。
首先帮助学生理解:什么是横截面?再让学生做后学生讲评。
3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后练习。
做练习三的第11、12、13题。
长方体和正方体教案人教版篇十四
投影出示练习六第l题。
解答练习六第2题,步骤同第1题。
教师:在日常生活和生产中,往往不是算长方体的每一个面的面积,而是需要计算长方体的表面积。
出示例3。
学生读题,找出条件和问题。
让学生看第25页例1下面的“想”,并填好空。然后,引导学生列出算式:6×5×2+6×4×2+5×4×2+6×4。
提问:6×5×2、6×4×2、5×4×2分别求的什么?
学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下,有没有漏算或者重复计算的面,然后让学将计算过程和结果填在书上。
提问:这道题还可以怎么列式呢?
同桌同学讨论,解答。教师巡视。
指名汇报算式:(6×5+6×4+5×4)×2。
提问:问什么先算3个面的面积和再乘以2?
学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。
提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上、下面的面积和,然后再加起来。第二种方法,实现算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。
提问:哪一种方法更渐变?(第二种)。
前左下。
的宽找错了)。
接着,教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。
三、课堂练习。
做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。
四、全课总结。
长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。
五、布置作业。
练习第3、4题。
长方体和正方体教案人教版篇十五
课题三:
教学要求 在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。
教学重点 理解底面积。
教学用具 投影仪。
教学过程。
一、创设情境。
1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。
2、填空。
(1)长、正方体的体积大小是由 确定的。
(2)长方体的体积= 。
(3)正方体的体积= 。
二、探索研究。
1.观察。
(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。
结论:长方体的体积=底面积×高。
正方体的体积=底面积×棱长。
2.思考。
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
v = sh。
三、课堂实践。
1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。
2.做第35页的“做一做”的第2题。
首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。
3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。
四、课堂小结。
学生小结今天学习的内容。
五、课后实践。
做练习七的第10、11、12题。

一键复制