教案的编写需要注重语言的精炼和准确,表达要清晰、简洁、通俗易懂。编写完美的教案需要教师全面了解教学内容和教学要求。教案的编写需要注意语言的准确性和表达的精确性,避免产生歧义和误解。
三年级可能性人教版教案篇一
教学目标:
1、通过推想和对熟悉事物的讨论,初步感受生活中有些事件的发生是确定的,有些则是不确定的。
2、能用合适的语言对生活中的一些现象和事件发生的可能性做出描述,并和同伴交流想法。
3了解可以用数学语言描述某些生活现象,感受数学与生活的密切联系。
教学重点、难点:。
能用合适的语言对生活中的一些现象和事件发生的可能性做出描述。
教学准备:纸鹤、课件。
教学过程:。
一、创设情境。
师:同学们,看老师带来了什么?(出示两盒纸鹤)看到这些纸鹤觉得熟悉吗?
生:熟悉,都是我们自己折的。
(以学生熟悉的事物引入新课,激发学习兴趣。)。
(帮助学生建立自信,为充分发挥其主动性奠定基础。)。
师:请同学们观察这两盒纸鹤,看每盒有什么特点?
生:1号盒子里全是红纸鹤,2号盒子里既有红纸鹤又有黄纸鹤。
(培养观察能力。)。
师:你们喜欢什么颜色的呢?
学生自由发言。
师:喜欢红色纸鹤的人很多,老师也喜欢红色的。因为红旗是红色的,红领巾也是红色的,红色象征着热情,我们对待生活就应该具有火一样的热情。
(对学生进行情感教育。)。
二、体验与感悟。
请同学们思考一个问题:在哪个盒子中一定能摸出红纸鹤,在哪个盒子中不一定能摸出红纸鹤?为什么?(出示课件)。
请同学们小组合作,猜一猜结果,要说清为什么?(要求每个同学都发言,并学会倾听别人的意见)将课件中的“哪个”改成“1号盒”和“2号盒”,把“?”改成“。”
课件演示“一定”、“不一定”
学生:
1、小组合作讨论。
2、交流猜的结果及猜想的理由,重点讨论“为什么”。
3、亲自摸一摸,验证自己的猜想。
3、亲自摸一摸,验证自己的猜想。
同时学会用“一定”、“不一定”描述摸纸鹤的结果。
4、将全班同学摸纸鹤的结果统计在统计表中。
5、观察统计表,再次肯定猜想结果。
(培养合作能力及语言表达能力。)。
师:在刚才的活动中我们学会了用哪两个词来描述摸纸鹤的结果?
生:一定、不一定。
(掌握“猜想—验证”的数学思维能力。)。
下面就请同学们结合自己的生活经验,用“一定”或“不一定”描述下面的事件。
课件演示教材第30页的内容:
1、9月10日是教师节。
2、扔一枚硬币,背面朝上。
3、后天本地有雨。
4、地球每天都在转动。
你能结合自己的生活经验,用上“一定”或“不一定”来说一说身边的事吗?
(学会表达自己的想法。)。
“说一说”
1、在生活中有哪些现象是可能发生的,哪些现象是不可能发生的。
(课件演示教材第31页的情景)。
学生:(1)思考女儿与妈妈的年龄大小、身材高矮等方面的问题。
(2)说一说生活中还有哪些现象是确定的,哪些现象是不确定的。
(在生活中学数学。)。
2、判断下面现象哪些是可能发生的,哪些是不可能发生的。
(课件出示教材第31页的内容)。
1)太阳从西边生起。
2)每天都有地区下雨。
3)小树一年长高一米。
4)亮亮一年长高一米。
总结:生活中有些事情的发生是确定的,有些则是不确定的。
“问题讨论”
(1)独立判断。
(2)全班交流。重点说一说判断的理由。
(巩固所学知识)。
三、知识拓展。
1、指名读一读。
2、讨论“为什么叫爆出了冷门”
总结:出乎人们意料的事件发生就叫“爆冷门”。
四、小结。
说一说本节课你有哪些收获?
三年级可能性人教版教案篇二
1.在具体情境中,通过现实生活中的有关实例使学生感受简单的随机现象,初步体验有些事件的发生是确定的,有些是不确定的。
2.通过实际活动(如摸球),使学生能列出简单的随机现象中所有可能发生的结果。
3.通过试验、游戏等活动,使学生感受随机现象结果发生的可能性是有大小的;能对一些简单的随机现象发生的可能性大小作出定性描述,并能和同伴进行交流。
1.教学内容和作用。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类。一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面还是出现反面。在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率论正是研究不确定现象的规律性的数学分支。
《标准(2011)》将“概率”作为义务教育阶段数学课程内容“统计与概率”中的一部分,并将《标准(实验稿)》中的核心概念“统计观念”修改为“数据分析观念”,具体阐释为:“了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴含着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。数据分析是统计的核心。”
为了体现课标的要求,本套教材从第二学段开始安排“概率”的学习,并且根据学生的年龄特点,第二学段称为“随机现象发生的可能性”,第三学段称为“事件的概率”。因此,本单元知识内容的学习对学生后续概率知识的学习有很重要的作用。
本单元内容结构如下:。
在具体编排上,本单元的教学内容分为两个层次。
一是初步感受随机现象中数据的随机性(例1)。在概率学习中,帮助学生了解随机现象是非常重要的。教科书第44页呈现了学生熟悉的“联欢会上抽签表演节目”的场景来引入例1的学习,通过小丽、小雪、小明三位同学抽签的活动,使学生在具体情境中体验事件发生的确定性和不确定性,感受在相同的条件下重复同样的试验,其试验结果不确定,以至于在试验之前无法预料哪一个结果会出现。
二是在不确定的基础上体会随机现象的统计规律性(例2、例3)。随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。由于小学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书第45页例2,通过讨论“摸出一个棋子,可能是什么颜色”,使学生在活动中进一步认识简单试验所有可能发生的结果,并通过“重复20次”的试验统计,初步感受随机现象的统计规律性,知道事件发生的可能性是有大小的。例3通过让学生根据摸球试验的统计结果来推测袋中何种颜色的球多,进一步深刻体会随机现象的统计规律性。
练习十一中的练习形式多样,层次分明,通过“说一说”“掷一掷”“连一连”“涂一涂”“猜一猜”“填一填”等活动,为学生提供了积极思考、动手实践和合作交流的空间,有利于学生更好地理解本单元所学知识。
需要说明的是,在义务教育阶段,所涉及的随机现象都基于简单随机事件,即所有可能发生的结果是有限的,每个结果发生的可能性是相同的。
2.教材编排特点。
本单元教材在编排上有以下特点。
(1)运用数据分析来体会随机性,强调对可能性大小的定性描述。
关于“可能性”这一内容,原来的实验教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的,知道事件发生的可能性是有大小的。第二次在五年级上册,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,学会用分数描述事件发生的概率。
但教学实践表明,第一学段学生理解不确定现象有难度,不容易理解事件发生的可能性。
另一方面,在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大干世界。因此,在可能性知识的教学中,应加强对学生概率素养的培养,增强学生对随机思想的理解,使学生充分感受和体验简单随机现象中数据的随机性,能对一些简单的随机现象发生的可能性大小作出定性描述,而不要把丰富多彩的可能性内容变成了机械的计算和练习。鉴于此,在这次课程标准修订中,学生在第一学段中将不再学习概率,将不确定现象的描述后移到第二学段,即使对于随机性的学习,《标准(2011)》中也提出运用数据分析来体会随机性,并且强调对可能性大小的理解,而不是对可能性本身的理解,使这部分内容更具可操作性,符合小学阶段学生学习的特点。
(2)提供丰富的现实学习素材,促进数学知识的理解。
《标准(2011)》指出:“学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。”所谓“经历”,是指“在特定的数学活动中,获得一些初步的经验”。因此,要“经历”就必须有一个现实的活动情境,让学生在熟悉的情境中,联系自己身边具体的事物,通过观察、操作、解决问题等丰富的活动,感受数学知识的含义,认识数学与生活的密切联系。
本单元教材注意体现这一理念,不仅利用丰富多彩的呈现形式,为学生提供现实的、有趣的学习素材,同时注意所设计的教学活动能使学生经历知识的形成过程。首先,教材选取学生熟悉的生活情境作为教学素材,以“联欢会上抽签表演节目”(例1)、大量的活动(做一做、例2)等来丰富学生对不确定现象的体验,使学生初步了解现实世界中存在着的不确定现象,并逐步知道事件发生的可能性有大有小。其次,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏、抛硬币、掷骰子等,这些活动都特别注意联系学生的生活实际,不但便于教师组织教学,更使学生在大量观察、猜测、试验、思考与交流的数学活动中,逐步丰富对随机现象和可能性大小的体验,经历知识的形成过程。再次,教科书第49页编排了“生活中的数学”,一方面可以加深学生对所学数学知识的理解,另一方面也使学生感受到可能性知识与生活的联系,有利于培养学生的应用意识。
(3)注重方法的指导和知识的整理。
要体验随机现象中数据的随机性,就要求学生在进行相关试验活动或游戏活动时必须遵守一定的规则,例如摸球时不能看着球摸,也不能摸完一次后不摇匀球就接着摸,这样都不能很好地体现随机性。教科书在相关例题及习题中明确提出了“放回去摇匀再摸”“按要求涂一涂”“随意摸一张”等要求,对学生的试验和游戏活动进行方法的指导,使学生能更好地体验数据的随机性。
另外,本单元虽然内容较少,但仍然编排了“成长小档案’’这一内容。通过“本单元结束了,你有什么收获?”一问,帮助学生回顾和梳理对可能性的认识,并通过两位学生的表达“根据可能性的大小来涂色很有意思”“生活中经常会遇到可能性的问题”来感受数学与生活的紧密联系,激发学习的兴趣。
1.重视学生的经验和体验,创设贴近学生实际的问题情境。
对于不确定性现象和可能性,第二学段的学生在生活中已经有了一定的经验和体验。在教学中,不管是在学生熟悉的生活情境还是感兴趣的游戏活动中(如掷硬币、玩转盘、摸卡片等),教师都应注意创设各种问题情境,充分调动学生的主动性和积极性,鼓励学生亲自动手试验,在试验中体验事件发生的可能性,让学生在具体的操作活动中进行独立思考并主动与同伴交换自己的想法,引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性,经历知识的形成过程。
2.引导学生收集和积累不确定现象和可能性的例子。
修订后的教材中,本单元是学生第一次正式学习“概率”,因此,提供丰富的随机现象实例,无疑能有效地促进学生充分感受和体验不确定现象和事件发生的可能性。教学本单元时,教师应鼓励学生在课前、课中、课后收集和积累一些教材上和生活中遇到的不确定现象的例子,并引导学生进行展示交流。例如,现在很多超市或商店在节假日时都会设计一些摸奖和转盘游戏,教师可以把它们引入到课堂教学中,组织学生交流、思考,引导学生正确的认识生活中的一些现象。
3.组织开展简单的实践活动,培养学生的应用意识。
为了培养学生主动发现生活中的数学问题并能有意识利用所学数学知识进行解释和解决的能力,《标准(2011)》中增加了核心概念——应用意识。但课堂教学由于时间和空间的限制,对于培养学生应用意识的作用是有限的,所以在教学本单元时教师可以适当地设计一些简单的实践活动(如为班级或学校元旦联欢会设计一个摇奖转盘等),将课内外学习结合起来,使学生感受数学与生活的联系,从而培养学生的应用意识。
4.把握好教学要求。
本单元主要是让学生对随机现象“初步体验”和“感受”,因此,教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生能够结合具体的问题情境,用“一定(肯定)”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。
5.建议用3课时教学。
三年级可能性人教版教案篇三
教材内容:
大家好,今天我要说课的内容是北师大版课标实验教材三年级上册第八单元《可能性》。
教材分析:
在现实世界中,为了帮助学生认识现实生活中的确定现象和随机现象,《课程标准》第一学段新增了属于概率知识范畴的内容《可能性》。旨在引导学生观察分析生活中的现象,初步体验现实世界中存在着不确定现象,认识事件发生的确定性和不确定性。教材选取了摸球游戏的现实情境,引入本单元的学习内容。通过主题图的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的。
设计思路:
1.用学生感兴趣的游戏活动作为教学素材,帮助学生理解数学知识。
2.引导学生经历做数学的过程,让学生在数学活动中体验不确定现象和可能性。
教学目标:
1、通过猜测试验分析试验数据,经历事件发生可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,体会事件发生的可能性是有大有小的。
2、让学生感受一定、不可能、可能在一定条件下可以互相转化。
3.在活动交流中发展合作学习的意识和能力。
教学重难点:
理解可能性,建立正确的随机概念。
(在本课教学中我运用了以下的教法):创设愉快的教学情境,利用有趣的数学活动调动学生学习的`积极性;挖掘教材及学生的潜在因素,根据学生已有的生活体验,做到因材施教,因人施教,使每一位学生都有不同程度的发展。本节课主要采取小组合作学习方式,组内设有组长、汇报员、记录员来组织和调控整个学习活动,让每个学生都能通过亲自动手操作,获得对事件发生的可能性的体验,同时养成学生乐于与同伴合作、交流的习惯。
教学过程:
一、创设情境。
同学们,你们喜欢做游戏吗?今天我们来玩摸球游戏。(板书课题)然后要求学生设计出几种放球的方案。(板书学生的方案:全放黄球全放白球既放黄球又放白球)。
(设计意图把教材中呈现的摸球游戏的情境贴近学生,为更好的引导学生经历将现实问题抽象成数学模型并进行解释与应用作好心理上的准备。)。
三年级可能性人教版教案篇四
教学内容:
教材104~105页。
教学目标:
1.使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
2.能够列出简单实验中所有可能发生的结果。
3.培养学生学习数学的兴趣,形成良好的合作学习的态度。
教学重、难点:
体验事件发生的确定性和不确定性。
教学过程:
一、活动引入新课。
击鼓传花游戏,鼓声停时一位同学上台抽签,签中内容有礼物、唱歌、猜谜。
猜猜他抽中了什么签?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
二、自主探索,获取知识。
(一)教学例题1。
请同学们看前面,这里有个盆:1号盆、2号盆。(实物:例题上的装有不同颜色小球的盆)咱们来看看里面都有些什么颜色的球。
展示两盆中球的颜色、数量。
1、从1号盆里面任意摸出一个球,一定是红球吗?为什么?
学生讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
(依次板书:一定可能不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盆,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
2、从2号盆里任意摸一个呢?请小组讨论。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盆里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。
3、活动小结。
(二)教学例题2。
1、生活中有许多的“可能性”
例如:……(请学生举例几个)。
2、自已阅读书本例题2。
谁理解题目意思了,给大家解释一下。
独立完成。
3、汇报、讲评。
4、练习。
108页练习二十四第一题。
三、全课总结,课外延伸。
这节课我们学习了有关可能性的知识,把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
学生说完后全班交流。
四、巩固练习。
p1082、3。
教学反思:
可能性(二)。
教学内容:
教材p106―107。
教学目的:
1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
2、通过实际操作活动,培养学生的动手实践能力。
3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
教学过程:
一、引入。
用自己的话说一说什么是“可能性”举例子说明。
今天我们继续学习。
关于“可能性”的知识。
二、实践探索新知。
1、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、小结。
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红多。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的。
2、教学例4。
(1)出示盒内球(一绿四蓝七红)。
3、p106“做一做”
图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。
利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。
三、练习。
p1094。
第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。
p1095。
教学反思:
教学内容:
教材p107―109。
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入。
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知。
1、教学例5。
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数。
黄
红
活动汇报、小结。
三年级可能性人教版教案篇五
教学目标:
1、让学生在猜想、实验验证、得出结论的过程中,进一步体验不确定事件发生的可能性的大小,能对可能发生的结果和可能性的大小作出判断,并正确使用恰当的词语描述发生可能性的大小,与同学进行交流。
2、在活动交流中,培养学生合作学习的意识及能力,使学生能够运用所学的知识解决实际问题。
教学重点:通过具体的操作活动,使学生进一步体会事件发生的“可能性”。
教学难点:帮助学生正确建立对“等可能性”的理解;让学生能够利用事件发生的可能性的知识解决实际问题。
教学准备:课件,每组用的同型不同色的小球;转盘原材料;记录表等。
教学实录:
一、复习导入。
介绍两种颜色的乒乓球。
生:大概,可能摸到。
二、初步认识可能性大小。
1、猜一猜。
生1:很容易摸到黄球。
生2:也可能摸到白球。
生3:我认为摸到黄球的次数会多一些。
师:情况真是这样的吗?有什么办法能让我们知道自己猜得对不对?
生:动手摸一下就知道了。
2、试一试。
师:那我们就来亲自动手试一试吧。
教师呈现活动要求:“每人每次任意摸出1个球,记录员记录摸得的结果,把球放回口袋摇一摇,换下一位继续摸。每组一共摸20次。”
师:按照要求,摸球时我们要注意些什么呢?
生1:不能抢。
生2:不能偷看。
生3:是任意摸、随便摸的意思。
3、说一说。
师:请按小组汇报一下,并说一说你们是怎样统计的。
生1:我们是用打勾的方法统计的;
生2:我们是用画横线的方法统计的;
生3:我们是数正字的;
师:能介绍一下你们小组是如何用数正字的方法进行统计的吗?
学生介绍方法。
师:你们觉得数正字的方法怎么样?
生1:简洁,一目了然。
生2:一个正字五画,数起来很方便。
师生根据统计表共同分析结果。
4、议一议。
师:通过摸球活动,你觉得能验证你刚才的猜想吗?
生:能。
师:你能得出什么结论吗?
生:摸到黄球的可能性大。
师:为什么会这样呢?
生:黄球多比白球多,摸到黄球的可能性就比白球的可能性大。
师:也可以怎么说?
生:摸到白球的可能性比黄球小。
教师板书:可能性大小。
三、理解等可能性。
1、变式思考,明晰概念。
教师出示图并提问:口袋里装着5个黄球和一个白球,任意摸,情况会怎样呢?
生:摸到白球。
师:一定是白球吗?
生:不一定,可能是白球,也可能是黄球。
师:摸到白球的可能性会怎么样呢?
生:摸到白球的可能性比黄球大。
2、实验比较,加深感悟。
教师出示图并提问:如果把口袋里的球换成4个白球、2个黄球呢?
生1:摸到白球的可能性比黄球大一些。
生2:黄球摸到的次数可能比白球少。
师:让我们来继续通过试验验证我们的想法吧。
学生动手实验,教师针对各小组的不同情况,分别给予指导。
统计各小组摸到不同颜色球的情况,记录并分析。
师:同样是可能性有大有小,你有什么新的发现吗?
生1:摸到黄球和摸到白球的次数相差没那么大了;
生2:因为白球和黄球相差没那么多了,摸到白球的可能性也就没那么大了。
3、促进迁移,深化理解。
教师出示图并提问:如果是3个黄球和3个白球,任意摸球,又会怎么样呢?
生:可能摸到白球,也可以摸到黄球。
师:现在摸到这两种球的可能性是……?
生:一样的,相等的。
师:为什么?
生1:因为它们的个数一样的。
生2:球的个数相等,被摸到的可能性相同。
……。
教师板书:相等。
4、引发探究,鼓励创新。
教师出示口袋,里面放着5个白球。
师:要使摸到黄球的可能性比白球大一些,怎么放黄球?
生1:摆6个。
生2:摆6―9个。
师:这几种摆法中,哪一种只多那么一点点?
生:应该摆6个。
师:要使摸到黄球的可能性比白球大得多,怎么放呢?
生:摆1个,2个,3个都可以。
师:你们也能利用今天所学的知识提出类似的问题吗?
生:摸到的黄球的可能性和摸到的白球的可能性差不多。
生1:6―7个。
生2:摸4-5个也行。
生3:摸到黄球的可能性和摸到白球的`可能性相等,要摆几个黄球?
生4:5个。
四、体会等可能性的公平性。
1、感受等可能性在实际生活的运用。
播放录像:足球比赛抛硬币选择场地的情境。
师:谁知道裁判在干什么?
生:用抛硬币的方法选场地,还可以确定谁先发球。
师:你觉得用抛硬币的办法决定场地和谁先发球,是不是公平合理呢?
生1:因为硬币有两个面,只要两个队长选择一个面就可以了,很方便。
生2:抛到正面与反面的可能性一样的,就比较公平。
师:类似于这样的公平竞争的方法还有哪些呢?
生1:铁锤、剪刀、布。
生2:掷骰子。
2、设计等可能性。
多媒体播放两学生下棋场景,两小朋友正用掷骰子的方法决定谁先走棋。
画外音:“掷到六点朝上就你走,掷不到六点就我走。”
师:如果是你,你愿意按这个规则与他下棋吗?
生1:不愿意。因为六点只有一面,甩不到六的有好几面,不公平。
生2:六点很难抛到,1、2、3、4、5很容易抛到。
师:如果你来下棋,同样用掷骰子的方法,你能设计一个公平的规则吗?
生1:如果掷到单数就你走,扔到双数就我走。
生2:如果掷的点数大,你大你就走。
生3:如果掷到1,2,3面,你走,如果掷到4,5,6我走。
生4:如果掷到单数,或是双数也可以的。
师:为什么这些规则你愿意接受呢?
生:因为它们的可能性相等。
五、综合应用可能性大小的知识。
师:老师前两天我去逛商场,看到商场里正用转盘搞一场“转、转、转,转出幸运星”的有奖促销活动,我们来看一看。
电脑出示转盘。
教师先指导学生观察转盘,并说一说转动这个转盘,结果有几种可能。
师:如果你是商场的经理,你会制定怎样的中奖规则?
生1:绿色没有奖,红色一等奖。
生2:绿色三等奖,紫色二等奖,红色一等奖……。
师:我注意到,你们都是把红色定为一等奖,为什么呢?
生1:因为转到红色的可能性比较少。
生2:一等奖奖品贵,应该由少数人得,不然老板就亏了。
分小组按要求制作转盘。
交流各组制作的转盘。
师:如果你是消费者,你最希望去转哪个转盘?为什么?
生1:我最希望转我们自己的转盘。
生2:我最希望转这个,因为获奖的可能性很大。
生3:是,要求中奖的可能性很大,不中奖的可能性很小。
师:如果你是老板,你希望设计哪个转盘?
生:当然希望是得大奖的人数少的了。
师:想想这几个转盘都是按哪个要求制作的?
生:中奖和不中奖的可能性相等。
师:在生活中,象这样的事例是随处可见,关键是要靠我们用明亮的双眼去寻找、去发现,用你智慧的大脑去分析、去判断。
三年级可能性人教版教案篇六
数学教学是数学活动的教学,是师生交往、互动与共同发展的过程,教师要根据学生的具体情况,对教材进行再创造,为学生提供充分从事数学活动和交流的机会,促进他们在自主探索的过程中真正理解和掌握数学知识技能。
一、说教材:
本节课是人教版义务教育课程标准实验教科书小学数学三年级上册第八单元“可能性”的内容。在现实世界中,严格确定性的现象十分有限,不确定性现象却是大量存在的,而概率论正是研究不确定性的规律的数学分支。标准将“概率”作为义务教育数学课程的四个学习领域之一“统计与概率”中的一部分,从第一学段起就安排了有关的学习内容。本单元主要是教学事件发生的不确定性和可能性,使学生初步体验现实世界中存在着不确定的现象,并知道事件发生的可能性是有大小的。这部分内容可用四个课时来教学。我讲的主要是第1课时,例1和例2的内容,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的,下面我就本节课说一说教学目标。
二、说教学目标:
1、知识与技能:(1)通过具体的操作活动,让学生直观感受到有些事件的发生是确定的,有些事件的发生是不确定的。(2)结合具体的问题情景,能用“一定”、“不可能”、“可能”简单描述事件发生结果。
2、过程与方法:(1)创设有趣的活动和游戏,如摸小正方体实验、涂色活动等,让学生经历“猜想—实践—验证—推测”的过程,体验事件发生的.可能性和不确定性。(2)充分关注学生的学习过程,对积极参与、勇于交流的行为给予充分的肯定和表扬。
3、情感、态度与价值观:让学生在同伴的合作和交流中获得良好的情感体验,感受到数学与生活的密切联系。
三、说重点、难点:
重点:通过具体的操作活动,初步体验到有些事件的发生是确定的,有些事件的发生是不确定的。
三年级可能性人教版教案篇七
教学目标:
2、培养初步的'判断和推理能力。
3、培养学习数学的兴趣,形成良好的合作学习态度。
教学过程:
一、联系生活、激趣引入。
1、教师抛一元硬币,让学生猜哪面朝上。
2、为什么有人猜正面,有人猜反面呢?
3、小结:在没有看到结果前,硬币可能正面朝上,也有可能反面朝上。(板书课题:可能性)。
二、创设情境,探索新知。
1、创设情境。
出示三种颜色的球:红球、黄球和绿球,告诉学生这些颜色的球被装在了三个黑塑料袋里,选三位学生上来参加摸球游戏,一共摸5次,摸到红球次数多的获胜。
2、摸球游戏。
(1)让三位学生从上面三个布袋各选一袋,从中任意摸一个球,教师在黑板上记录,每人各摸到了什么颜色的球。再让学生将球放入袋中,搅拌一下,再摸第四次,并记录结果。(一人摸到了5个红球,一人摸到有红球也有黄球,还有一人一个黄球也没摸到)。
(2)观察记录下的摸球记录结果。
3、交流汇报。
(1)提问:谁摸的红球多?如果让你摸,你想在哪个袋子里摸?为什么?
(2)将袋子里的球倒入透明的罐子,让学生看(板书:全是红球)。
提问:在这样的袋内任意摸一个会是什么颜色的球?(板书:一定)。
(3)你最不想在哪个袋子里摸?为什么?
(4)将袋子里的球倒入透明的罐子,让学生看(板书:没有红球)。
提问:在这样的袋子里会摸出红球吗?(板书:不可能)。
(5)还有一个袋子里可能有什么颜色的球?
(6)将袋子里的球倒入透明的罐子,让学生看(板书:红球黄球)。
提问:在这个袋内任意摸一个会是什么球?(板书:可能)。
4、小结:在全是红球的袋内任意摸一个“一定”是红球;在没有红球的袋内任意摸一个“不可能”是红球;在既有红球,又有黄球的袋内摸一个“可能”是红球,也“可能”是黄球。
三、合作探索、解决问题。
1、书p99“想想做做”第1题。
指名学生回答并说说理由。
2、“想想做做”第2题。
(1)同桌讨论交流。
(2)让学生来装球,然后摸。
3、判断可能性(一定、可能、不可能)。
(1)每天太阳从东边升起。
(2)后天下雨。
(3)10月11日是星期三。
(4)老师明天穿黑色的衣服。
(5)每天有48小时。
(6)秋天过去是冬天。
4、用“一定”、“可能”、“不可能”说说生活里的事。
四、总结。
三年级可能性人教版教案篇八
教学目标:
1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用一定、可能、不可能来描述事情发生的可能性。
2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。
3、激发学生学习数学的兴趣,产生积极的情感体验。
教学重点:
感受体验事情发生的确定性和不确定性,会判断生活中一定、可能、不可能发生的事情。
教具学具:
课件、彩球、塑料袋。
教学过程:
一、创设情景,初步感知。
1、初步感受事情发生的确定性。
(1)用一定来描述事情发生的确定性。
师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?
生:想看。
(学生有的说信,有的说不信)。
师:那我们就试试吧。
(师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)。
师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?
师:当事情确定会发生时,我们可以用一定来描述。(板书:一定)。
把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?
(2)用不可能来描述事情发生的确定性。
师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?
三年级可能性人教版教案篇九
新课标人教版三年级上册第104—105页。
1、使学生初步体验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”“可能”“不可能”等词语描述生活中一些事情发生的可能性。
2、能够列出简单实验中所有可能发生的结果。
3、培养学生学习数学的兴趣,形成良好的合作学习的态度。
体验事件发生的确定性和不确定性。
课件、盒子、棋子等。
一、创设情境,生成问题
师:同学们,喜欢过元旦吗?
生:喜欢。
师:元旦你想为同学们表演什么节目?
生1:唱歌.
生2:跳舞。
……
生1:元旦联欢会上,同学们每人表演一个节目,并且是抽签决定自己表演什么节目。
……
师:如果我们也以这种方式表演节目,你还能表演你准备的节目吗?
生1:不一定。
生2:可能。
生3:不确定。
……
师:这就是今天我们要研究的新问题,可能性。(板书:可能性一)
(设计意图:通过学生熟悉的“新年联欢会上抽签表演节目”的场景生成问题,目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的联系。)
二、探索交流,解决问题。
(一)教学例1
1、引领思考,探索方法
师:请同学们以小组为单位坐好,拿出准备好的2袋棋子和2个盒子,将1号袋的棋子倒入1号盒子,2号袋的棋子倒入2号盒子。
请小组长将两个盒子的棋子摇匀。(1号袋棋子为红色,2号袋棋子有红、黄、绿、蓝四种颜色,棋子除颜色外完全相同。)
师出示问题:几号盒子肯定能摸出红棋子呢?
师:谁来猜一下?
生1:1号盒子。
生2:2号盒子。
......
师:我们来试验一下。
教案《人教版三年级数学上册《可能性(一)》教案》,
注意,每个同学摸之前要先摇匀棋子,摸完后放回,并且不能偷看。
生在小组内试验并交流。
师:哪个小组说一下你们验证的结果?
生1:通过实验,我们小组知道1号盒子一定能摸出红棋子,2号盒子可能摸出红棋子。
生2:我们小组知道1号盒子装的都是红棋子,所以一定能摸出红棋子。
生3:通过实验,我们小组发现2号盒子里有红棋子,所以可能摸出红棋子,也可能摸出的是黄棋子、绿棋子或蓝棋子,不一定能摸出红棋子。
(要求学生列举出所有可能发生的结果。对发言积极、完整的学生及时表扬,激励学习。)
……
(设计意图:通过猜测验证,使学生初步体验,有些事件的发生是确定的,有些事件的发生是不确定的。)
(4)师小结:通过猜测、验证,我们知道1号盒子装的都是红棋子,所以一定能摸出红棋子;2号盒子里有红棋子,所以可能摸出红棋子,也可能摸出绿棋子、黄棋子、蓝棋子。
三年级可能性人教版教案篇十
批注。
教学目标:
1.运用分数表示可能性的方式,能自主地设计一些活动方案。
2.能对实际生活中的事件与现象,运用可能性的知识进行合理的设计。
教具学具:多媒体课件。
教学方法:观察、讨论,小组合作。
教材分析与教学建议:
本专题的“设计活动方案”教材呈现的编写的内容主要为三个部分:一是提出设计方案的要求。在学生学习分数表示可能性大小的基础上,提出让学生自主地设计活动方案,其目有两个方面,一方面进一步巩固对分数表示可能性大小的方式,另一方面能创造性的运用所学的知识,设计符合实际的活动方案,以增强学生学习的乐趣。在提出设计的方案后,教材呈现几种提示性的设计情况,这是反映了学生在设计中可能出现的几种情况。当然,在学生的实际设计中,各种方案会丰富得多。“练一练”是通过另一个实例进一步让学生尝试设计。而“实践活动”的内容,则是结合生活中的具体事件,请学生根据相关的条件,运用可能性的知识,设计一个促进销售的设计方案。
教学过程:
二、提出设计方案的具体要求。
由于学生是第一次开展自主的设计,因此,可以把这一设计活动安排在小组的讨论中进行。
各小组充分发挥想象力,设计出各种与众与不同的方案。
开展交流,首先请各组汇报设计的方案并说一说设计时的想法。对于学生设计出的不符合设计要求的方案,教师也不要急于否认,让学生说一说他们的想法,并从他们的想法中加以引导。学生在交流汇报后,把每一种方案的设计均用分数的形式表示出来,并引导学生观察各种不同方案中的共同点,从中发现设计的基本特点。
三、做一做。
学生独立设计正方体,并表述清楚,怎样能使3朝上的可能性为1/2。
四、巩固练习。
在开展练习中,如果学生能比较好地理解与掌握,那么可以把练习作为学生独立的设计活动。如果学生有困难,教师仍可以补充一些相关的内容,供小组共同设计,以便每个学生都能理解与掌握。
五、实践活动。
本题的设计是呈开放性的,每个学生都可以从自己的经验中进行合理的设计。设计的种类主要有下列几个方面:一是打折的销售设计。二是摸奖销售设计。摸奖销售也可以分为两种,三是打折与摸奖混合的销售设计。即商品先打折一部分(在10%以内),剩余部分的让利进行摸奖。对设计的结果尽可能开展交流,以拓展学生的设计思路。
板书设计:
二、提出设计方案的具体要求。
三、做一做。
四、巩固练习。
三年级可能性人教版教案篇十一
【知识点】:
1、举出生活中的简单物体让学生观察总结:同一个物体从不同的角度看会有不同的形状。
2、引入由正方体搭建的立体图形,给学生示范书中提供的搭建活动,边操作边讲解。
3、让学生分组进行操作,并给予指导,引导学生观察所搭建的立体图形。
4、总结:同一立体图形从不同角度观察会有不同的形状。
第二课时。
【知识点】:
1.示范书中提供的第二个搭建活动。
2.让学生分组进行练习,在学习中学会如何描述物体的相对位置。
3.对学生搭建活动予以指导和肯定,让学生在搭建的过程中学会描述正方体的相对位置。
4.指导学生多做几次搭建练习,巩固所学的知识。
第一课时摸球游戏。
【知识点】:
1、通过“猜测-实践-验证”,让学生初步感受事情发生的确定性与不确定性,即一定发生或不可能发生的现象是确定的,而可能发生或可能不发生的现象是不确定的。
2、理解事件发生的可能性是有大有小的,可能性的大小与事件的基础条件及发展过程等许多因素有关。
3、在活动中培养学生的合作意识及合理推断的能力。
第二课时生活中的推理。
【知识点】:
让学生在以解决问题中经历对生活现象的推理、判断的过程,同时领悟出现逻辑推理问题的解决方法,如排除法、假设法、图解法等,并加以运用。在解决问题中培养学生的逻辑推理能力与语言表达能力,体验学习的乐趣。
第一课:购物。
【知识点】:
1、探索并掌握两、三位数乘一位数(不进位)的计算方法,并能正确的进行计算。
2、师引导学生在看懂图意的基础上,提取数学信息,提出问题,并能运用不同的方法解决问题。
3、让学生经历独立思考、合作交流的过程,探索两、三位数乘一位数(不进位)的计算方法。教师要有意识的引导学生列竖式计算乘法。
在计算中明确算理,学会竖式的书写。用乘数从个位起依次去乘另一个乘数的每一位,把得数写在对应的数位上。
第二课:去游乐场。
【知识点】:
1、探索并掌握两、三位数乘一位数(进位)的计算方法,并能正确的进行计算。
结合具体情境,逐步培养提出问题,解决问题的意识和能力。
3、理解“满十进一”的算理,进而类推出“满几十进几”的算法,初步掌握进位法则:两(三)位数乘一位数,从个位乘起,哪一位乘积满几十,就向前一位进几。
培养学生对知识的类推能力和主动获取新知识的学习习惯。
第三课:乘火车。
【知识点】:
1、探索并掌握两、三位数乘一位数(连续进位)的计算方法,并能正确的进行计算。
2、结合具体情境,逐步培养提出问题,解决问题的意识和能力。
3、在已有两位数乘一位数进位乘法的基础上,放手让学生自主探索连续进位乘法的计算方法,并能正确计算。
4、体验算法的多样化。
第四课:0×5=?
【知识点】:www.
1、探索并掌握“0和任何数相乘都等于0”这个规律。
2、一个因数中间或末尾有0的乘法是本节课的教学重点。
3、借助“乘法的意义”“找规律”等方法探索并掌握“0和任何数相乘都等于0”这个规律。
4、因数末尾有0的乘法,当因数末尾有0时,计算时0可以先不参加运算,计算结束后因数末尾有几个0就在乘积后加几个0。
因数中间有0的乘法,可以通过对比进行教学,如:402×3=1206,
307×8=2456,同样是因数中间有0,为什么一个乘积中间有0,而另一个却没有。通过讨论402×3积中间是0的那位,因为没有进位,积当中就保留了0,而307×8,因为发生了进位,所以积当中的0就不见了。
结论:因数的末尾有0,乘积中一定有0。
因数的中间有0,乘积中不一定有0。新课标第一网。
5、掌握因数末尾有0的乘法竖式的写法。
6、通过小组讨论,经历与他人交流各自算法的过程,使学生逐步学会合作学习。
第五课:买矿泉水。
【知识点】:
1、学生已经掌握了两、三位数乘一位数的基础上,探索多样的估算和计算方法。
2、结合解决问题的过程,理解并掌握连乘的运算顺序,并能正确计算。
3、在学生已经掌握了两、三位数乘一位数的基础上,探索多样的估算和计算方法。
4、结合买矿泉水的具体情境进行估算,并解释估算过程,逐步培养估算意识和估算能力。鼓励学生运用多种方法进行估算。
5、在交流算法的过程中,对于学生汇报的多种计算方法都要予以肯定,但要着重引导用连乘的方法解决问题,并掌握连乘的运算顺序。
三年级可能性人教版教案篇十二
可能性是统计与概率中的一部分,本节课主要教学事件发生的不确定性和可能性,教材从儿童游戏击鼓传花的情境入手,引出事件的可能性,让学生能对一些事件发生的可能性作出描述,并能和同伴交换想法。
通过猜想--验证--判断的学习活动,使学生初步体验现实世界中存在着的不确定现象,知道事件发生的可能性是有大小的。
二、教材分析。
1、“课程标准”对这部分的要求:
让学生生活事例丰富学生对确定和不确定事件的认识,知道事件发生的可能性的大小,培养学生对数学的兴趣。引导学生独立思考,合作交流,体验探究的乐趣,注重对事件可能性的理解。
2、可能性这节课有两部分内容:
3、可能性是数学课程的四个学习领域之一“统计与概率”中的一部分,作为概率论的初步。
三、学情分析。
“数学教学是数学活动的教学”,学生在经过很久的数学计算等一系列数学学习后,开展这一系列的游戏和活动,与现实生活再次联系起来,如:击鼓传花、摸球等等,使学生感受到数学的有趣,学生易学,乐学。
三年级的学生已经有较好的数学语言表达,数学分析能力,而且还有一定的科技知识基础,在整节课堂中,学生可以猜一猜,摸一摸,议一议,说一说,等探究活动,让学生了解到操作、比较、猜想、实验、验证对事物的认识、分析起重要的作用。教师也可以有意识的引导学生正确学习、观察、思考、分析、推理和正确使用数学语言,促进学生数学思维的发展,培养学生灵活运用所学知识,解决实际问题的能力,有效的提高数学素养。
四、教学目标:
使学生初步本验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”可能”“不可能”等词语描述生活中一些事情发生的可能性。
能够列出简单实验中所有可能发生的结果。知道事件发生的可能性是有大小的。
通过实际操作活动,培养学生的动手实践能力。
通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。形成良好的合作学习的态度。
五、教学重、难点:
1、 知道事件发生的可能性是有大小的。
2、体验事件发生的确定性和不确定性。
能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
六、教学策略与手段。
利用教材所提供的教学资源,学生根据内容提出自己的看法,让学生自己参与,自主探索,一合作的方法得到事物发生的可能性以及事物发生的可能性的大小。
七、课前准备。
硬币、鼓、花、球、盒子。
八、教学过程:
一、活动引入新课。
同学们,上课前老师先让你们猜猜我的哪只手中有硬币?
(引出用可能、不可能等词来表达,揭示课题:可能性)。
二、自主探索,获取知识。
(一)教学例题1。
请同学们看前面,这里有个盒:1号盒、2号盒 。(实物:例题上的装有不同颜色小球的盒)咱们来看看里面都有些什么颜色的球。
展示两盒中球的颜色、数量。
1、从1号盒里面任意摸出一个球,一定是红球吗?为什么?
学生分组讨论,教师巡视指导。
各小组都已讨论好了,谁想代表小组发言?(依次指名学生说)。
( 依次板书:一定 可能 不可能)。
师:小朋友讨论得都非常好。下面,我们实际来摸一摸,验证一下。1号盒,谁来?(学生摸出3个后提问,如继续摸下去,结果怎么样?)。
(红球)。
为什么一定是红球呢?学生自己小结。
2、从2号盒里任意摸一个呢? 请小组讨论。
( 红球?绿球?黄球?蓝球?)。
请学生摸一摸(摸出3个后提问,如继续措下去,能摸到红球吗?那可能摸出什么球?为什么?)(老师可根据盒里剩下的球随机提问,如:接下去可能摸出什么颜色的球?接下去一定能摸到什么球?……)。
3、活动小结。
(从1号盒里面任意摸出一个球,都是红球,因为里面都是红球,从2号盒里任意摸一球,可能为?因为里面有三种球,有可能是红球,有可能是绿球,有可能是黄球。)。
(二)教学例题2。
1、把今天所学的知识和我们的生活联系起来,想一想生活中哪些事是一定会发生的,哪些事是不可能发生的,而哪些事是可能发生,也可能不发生的呢?你能举出一些例子,用“一定”“可能”、“不可能”说一说吗?请同学们先下位和你的好朋友说一说。(学生说)。
例如:
我数学考试能考100分;
天上会出现彩虹;
公鸡会下蛋;
天上会掉钱;
……(请学生举例几个)。
谁理解题目意思了,给大家解释一下。
地球每天都在转动(一定,地球在自转)。
我从出生到现在没有吃过一点儿东西(不可能,因为人不吃食物是不可能活的)。
三天后下雨(可能,因为天气在变化)。
太阳从西边升起(不可能,因为太阳是从东边升起来的)。
吃饭时,人用左手拿筷子(可能,世界上的人有的是习惯用左手拿东西的)。
世界上每天都有人出生(可能,世界上人本来就很多,地球又很大)。
(学生可以发表自己不同的见解,进行讨论,教师应当积极鼓励学生进行大胆的质疑,让学生对问题进行判断和推理,最后教师可以适当进行总结)。
用自己的话说一说什么是“可能性”举例子说明。
3、练习。
108页练习二十四第一题。
(三)、教学例3(比较两种结果的可能性大小)。
(1)观察、猜测。
出示小盒子,展出其中的小球色彩、数量,(四红一蓝)。
如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?
和同桌说一说,你为什么这样猜?
(2)实践验证。
学生小组操作、汇报实践结果。
汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。
从小组汇报中你发现了什么?为什么会有这样的情况?
小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。
(3)活动体验可能性的大小。
小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
活动汇报、小结。
实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的次数比红少。
(4)小组实验结果比较。
比较后,你发现了什么规律?
出示多组的实验结果,虽然 数据不一致,但呈现的规律是相同的。
汇报、讲评。
三、全课总结,课外延伸。
三年级可能性人教版教案篇十三
教学目标:
1、能对实际生活中的现象,用分数表示可能性的大小。
2、在活动中,培养学生合理利用生活中的数学,解决一些问题,激发学生的决策兴趣。
教学重点:用一个数字来表示可能性的大小情况。
教学难点:用分数表示可能性大小情况,并能够分析实情。
教学准备:课件。
教学设计:
一、谈话导入。
今天由我来和大家一起学习,知道今天要学什么吗?(板书课题)今天我们通过摸球游戏进一步学习可能性的有关问题。怎样用一个数表示可能性的大小。
点名回答:可能是你吗?
二、用一个数来表示可能性。
一)、交流中复习。
1、(课件出示问题)a、9个黄球1个白球。猜一猜:
c、从下面5个盒子里分别摸出一个球,结果是哪个答案?连一连。
2、可能性的大小与什么有关?
结论:与各种颜色的球的数量有关。哪种颜色的球多,摸出这种球的可能性就大。
追问:摸出什么球的可能性比较大?
二)、用“0”和“1”来表示可能性。
1、刚才同学们说得很好,再来看下面的例子。
(课件出示:盒子里只有两个黄球)。
想一想:如果用数表示从第1个盒子中摸到白球的可能性,可以用什么数来表示?
能否摸出我想要的白球?(不可能)。
像这样根本不可能发生的事,用一个数来表示,那可以说它发生的可能性为“?”“0”
小结:发生的可能性为“0”时,表示这件事根本不可能发生。板书:(不可能--0)。
2、(课件:第二盒两个白球)如果我想摸出白球,那情况又将如何?
全是白球。(老师同样请你来用一个数来表示可能性为一定发生的事件,你会用什么数?)同桌讨论、汇报、板书:
一定能--1。
4、小结:当有些事情一定发生时,我们可以说他的可能性为“1”,当有的事不可能发生的时候,我们说他发生的可能性为“0”。我们生活中有许多事情发生的可能性为“1”也有许多事情发生的可能性为“0”。
例如:
玻璃杯从很高的地方落在水泥地面上,那玻璃杯破碎的可能性为“?”
太阳每天早晨升起的可能性为“?”
公鸡下蛋的可能性为“?”
一粒有1~6个数字的骰子,随便怎么投掷,出现数字“7”的可能性为“?”
学生举例。汇报。
5、刚才列举了大量生活中的例子说明有些事件一定会发生,有些不可能发生,也知道用数字来表示这些可能性的情况,下面我们继续探讨可能性的另外一种表示方法。
三)、用分数表示可能性的情况。
(课件)1、地图。武汉、海南、哈尔滨分别在我国的什么位置?它们冬天下雪吗?
海南不可能下雪,它下雪的可能性为?哈尔滨一定会下雪,下雪的可能性为?
2、(课件)说说在下面盒子里摸到白球的可能性。
(第一个盒子里两个白球)一定能摸到白球,摸到白球的可能性为?
(第二个盒子里两个红球)不可能摸到白球,摸到白球的可能性为?
(第三个盒子里一红一白)摸到白球的几率是多少?你能用一个什么数字来表示摸到白球的可能性情况?(1/2)。
为什么用1/2表示?
两种球出现的机会是一样的,各占一半。
2、很好!如果我再放入一个红球到盒子里,摸出白球的可能性还是1/2吗?
学生思考,同桌之间交流交流,商量商量,可能性是几,为什么?
反馈:白球的数量占总数量的1/3,所以,一般情况下,我们摸出黄球的可能性是1/3。
3、那摸出红球的可能性呢?(2/3)为什么?
红球的数量占总数量的2/3,所以,一般情况下,我们摸出红球的可能性是2/3。
4、如果现在盒子里放7个红球,1个白球,摸出白球的可能性是多少?
放1个红球,7个白球,摸出白球的可能性是多少?
5、总结:现在谁来说一说,这个可能性的多少与什么有关?
看有多少球,其中白球占了多少个,这样就可以直接表示出来了。
三、应用可能性解决问题。
1、数学小法官。
2、填一填。
平分秋色十拿九稳天方夜潭百发百中。
四、课堂总结:
今天我们一起研究了关于可能性的一些问题,那你觉得自己有那些收获?
可能性的大小可以用数字表示。
利用可能性的大小,判断一些事情发生的几率。
三年级可能性人教版教案篇十四
教学内容:
教科书第106~107页的内容。
教学目标:
1.通过活动,让学生更加理解东、西、南、北、东南、西南、东北、西北八个方位。
2.通过让学生自主调查、讨论,寻找解决问题的方法,最后设计出自己喜欢的校园。
3.培养学生从多角度观察、分析问题的习惯,逐步提高解决问题的能力。
教学重、难点:
自主调查、寻找解决问题的方法,设计出自己喜欢的校园。
教具、学具准备:
电脑投影仪。
教学过程:
师生活动。
一、复习铺垫。
1、早晨起来,面向太阳,前面是什么方位?后面、左面、右面呢?
2、说说本校校园里八个方位都有哪些建筑物?如果把它画在纸上一般按什么规律来画?(上北下南、左西右东)。
二、情景导入,激发兴趣。
电脑展示某校校园平面示意图,说说校园的各个方位都有哪些建筑物或教学设施。
师:这个校园设计得漂亮吗?合理吗?你有什么建议?
师:如果能在设计漂亮、合理的学校里面学习,你们会有什么感想呢?你们想不想也自己设计校园呢?今天我们就自己来设计校园。(板书课题)。
三、小组活动。
1、小组交流:说说每人调查的本校和其他学校都有哪些设施。
2、集体反馈:请几个同学说说的情况。(用学过的东、西、南、北、东南、西南、东北、西北八个方位来叙述。)。
3、小组讨论:本校还有哪些地方需要改进的?必须添置哪些设备等。
4、集体反馈:请几个同学说说自己的看法。
5、出示本校的校园示意图,讨论:
(1)应该在什么地方添置什么设备?
(2)绿化上面你有什么见解?
(3)操场的大小或形状如何?
(4)你还有哪些设想?
6、利用手中的画笔来设计自己的校园。(以小组为单位,学生合作动手设计,教师巡视指导。)。
7、每个小组各派一名同学介绍自己设计的校园示意图。(利用学过的东、西、南、北、东南、西南、东北、西北八个方位来描述。)。
8、展示每个人的设计图,让同学们去参观交流。
四、全课总结:
同学们,通过这节活动课,你们有什么收获?(多请几个同学发言。)。
师:同学们,生活中有许多问题都跟数学有关,如设计校园。只要我们细心观察,认真思考,运用我们学过的知识认真分析,一定能找到解决问题的好方法,不断提高自己分析问题和解决问题的能力,设计出自己满意的校园。
三年级可能性人教版教案篇十五
邮编:312090。
电话:13017726662。
电子信箱:shenxiaojuan3@。
一、设计思想:
教学中利用二、三位数乘一位数8个小题的笔算,让学生再次经历了乘法的算理。练习中鼓励学生分类,进一步区分笔算乘法的进位不叠加、进位叠加的不同算法;鼓励学生展示错误,让学生带着思考、讨论、亲自体验,进一步深化了“进位叠加”的计算理念。这样的设计不但巩固了学生的笔算方法,还突破了“某一位上的乘积加上进来的数字要进位的”难度,提高了学生计算的正确力,大大降低错误率。利用应用练习的开放性,让学生灵活利用口算、估算、笔算去解决实际问题,这样也更好地加强了“算法多样化”的计算理念,既培养了学生“能为解决问题而选取适当方法”的能力,从而有利于发展学生的数感。
二、教材分析:
教学这个练习,教师必须重视学生掌握二、三位数乘一位数的笔算方法,巩固笔算过程中对算理的理解。在解决实际问题时教师还应鼓励学生合理利用笔算、口算、估算三种方法,让他们懂得算法多样的合理选择。教材中1~4是安排的是一次进位的乘法笔算练习题,其中有进位叠加。5~10有连续进位的乘法笔算计算题。11~12是两步计算应用题,提倡一题多解。13题是趣味数学,培养学生归纳推理的能力。教材这一系列的安排是学生已学习了万以内的笔算加法,也初步学习了笔算乘法中一位数乘二、三位数的进位不叠加和进位叠加的笔算方法。教材安排练习十八,主要是对前面例3、例4知识的进一步巩固和突破,通过计算练习和实际应用练习的训练,帮助学生提高多位数乘一位数的计算速度和正确力;也为下一节课学习乘的过程中处理“0”带来了方便;更为学习二、三位数的乘法打下良好的笔算基础。(因为在多位数乘法中始终分解成用几个多位数乘一位数的方法)。
三、学情分析:
学生已经掌握了万以内的加法计算,对万以内的加法计算已具备了计算能力,并初步学习了二、三位数乘一位数的进位不叠加和进位叠加的笔算。可是由于学生对多位数乘一位数还是刚新接授,计算起来还有这样那样的困难,他们还需要更多的练习与巩固,特别是最多可能发生的错误是:忘记加后而进上来的数;进位时加错(因为这里又要算乘又要算加);或错用进上来的数去乘另一个因数等。针对学生可能发生的错误,教师应对学生每计算一步,都看看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上。算前一位的积时,要想想有没有漏加后面进上来的数,算完以后,再查一两遍。为了让学生更有效地解决学习过程中的困惑,我有意在学生笔算时引导学生对这些笔算题进行分类,这样做是为了对连续进位笔算乘法有一个系统的整理,还鼓励学生勇于展示错误,从而分辨各种形式的计算问题,进一步降低难度,减少各种错误的出现。同时在解决实际问题的活动中渗透笔算、估算、口算,让学生不但掌握了计算技能,并能利用计算技能更有效地解决实际问题。
四、教学目标。
1、知识技能目标:巩固对一位数乘二、三位数的笔算方法,强化连续进位中的“进位叠加”的算理,并能通过计算解决一些生活中的实际问题。
2、过程与方法目标:培养学生自觉检查计算错误的意识,通过现实的数学问题,培养学生合理选择口算、笔算、估算的方法,正确有效地解决实际问题。
3、情感态度与价值目标:通过小组合作培养学生合作精神,并在数学实践活动中体验到数学的生活性和趣味性,体会到学数学的快乐。
五、重点和难点。
重点是进一步加强学生进行多位数乘一位数的“进位叠加”的笔算乘法。
难点则是“某一位上的乘积加上进来的数又要进位”的连续进位情况。
六、教学策略与手段:
整堂课我安排了:口算练习,笔算练习、应用练习、综合练习这几个环节,通过比较性的口算去降低“进位不叠加”和“进位叠加”的笔算难度,通过笔算练习进行分类与错误展示,巩固学生的笔算算理。利用应用练习的开放性进一步深入笔算,并能合理选择口算、笔算、估算三合一去解决具体问题。教学过程中还为学生创设了小组讨论、合作交流、相互竞争等学习环境。学生们在这种自由轻松的学习活动中勇于质疑,大胆展示错误,合理解决问题,感受了成功的喜悦。
七、课前准备:
(1)完成口算题和万以内的加法题若干。
(2)小黑板、课件。
八、教学过程:
(一)、口算练习,明确学习内容。
1、引入口算题。
师:小朋友,小精灵今天又来了,他带来口算题想考考同学们,你们愿意吗?请小朋友注意看,知道答案的就站起来回答。
(课件出示口算题)。
6×7=4×5=7×8=2×4=6×8=9×3=。
6×7+5=4×5+6=7×8+4=2×4+5=6×8+7=9×3+5=。
(学生口算时,有几组口算的速度快点,而有的则慢点)。
2提问。
师:口算有难度吗?通过口算你能联想到什么呀?(学生们纷纷反馈,很明显他们体会到有些乘加比较容易,而有些乘加比较复杂)。
生举例:老师6乘7得42加上后面的跟着的5,做起来比较简单,而6乘8得48加上后面跟上来的7,做起来很容易出错。
3、课题出示。
【设计意图】:通过比较性的口算练习让学生有易到难地去感受进位不叠加和进位叠加的计算过程,这样的训练方式不但可以在笔算中减少错误率,还能提高计算速度,有利于学生的计算效果。
(二)、计算练习,巩固笔算方法。
生:愿意。
1、计算并分类。
12×759×852×468×9314×4426×2459×7238×9。
(学生进行小组合作计算,老师让先完成计算组的学生上来板演)。
师:刚才的这些题我们可以怎样进行分类,谁能说给大家听(学生纷纷说开了)。
生1:我觉得可以这样分:
第一类:12×752×459×868×9。
第二类:314×4426×2459×7238×9。
理由是:第一类是二位数乘一位数,第二类是三位数乘一位数。
生2:我觉得可以这样分:
第一类:12×752×4314×4426×3。
第二类:59×868×9459×7238×9。
理由是:第一类是乘起来进位,加起来不进位,第二类是乘起来进位,加起来再次进位。
生3:我还可以这样分:
第一类:12×7314×4426×3。
第二类:314×4426×3。
第三类:59×868×9459×7238×9。
理由是:第一类是一次进位,第二类是隔位进位,第三类是连续进位。
生4:老师我还有一种:可以按一次进位,二次进位,三次进位来分类。
……。
【设计意图】通过分类进一步让学生对连续进位笔算乘法有了一个系统的整理,学生不但从外形上了解笔算乘法的结构,还从计算方法上区别了进位叠加与进位不叠加的不同算法,让学生在分类的过程中分辨各种形式的计算问题,为进一步降低难度,减少错误情况作了充分的准备。)。
2、寻找错误,强调算理。
师:通过刚才的计算与分类,你认为最大的困惑是什么?你想得到什么帮助?
生1:我发现刚才的笔算题比前几天的要复杂了:有的是一次进位;有的连续进位,而且每乘一位都需要向前进位。而前些天的题没那样难。
生2:我在做题中遇到的困难是:每乘一位都向前进位,每乘一位都要加上进上来的数,一共用了3次乘法和2次加法,等于做了5道口算题,特别复杂。
……。
师:你们观察得真仔细,别看一道小小的一位数乘法,这里面包含的步骤可多啦,更需要你们用耐心和细心去算。就是我们今天要进一步巩固的地方。
(学生展示自已的错误)。
(1)12(2)52(3)426(4)459。
×7×4×3×7。
----------------。
742812683223。
(学生相互找错误原因)。
生1:第一题的错误是忘记了后面2乘7进上来的数1。
生2:第二小题的错误是4与十位上的5相乘,乘得的积应是200,2要写在百位上,十位上只能写0,而这位同学把2却写在了十位上,所以错了。
生3:第四小题是进位时加错了,因为这里又要算7乘5,还要算加个位上9乘7的进上来的6。
生4:第三小题的错误与第一小题相差无几,2乘3得6后却忘加了6乘3进上来的1。
(从学生分析错误的过程中,教师要极时引导学生对笔算算理的深入理解)。
3、小结:
多位数乘一位数的计算题中,同学们要注意计算中的每一步,都要看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上;算前一位积时,要想想有没有漏加后面进上来的数;算完后再检查一两遍。
【设计意图】:寻找错误,让学生展示错误,是进一步巩固算理的一个重要途经,学生在错误面前可以认识到在计算过程中哪一点没有做到位,而教师则针对学生的错误作进一步的沟通和指导,通过师生互动,学生就会意识到我是因为忘记加后面的进上来的数;还是进位时加错;或是错用进上来的数去乘另一个因数等等。
(三)、应用练习,扩大思维范围。
谈话引入:刚才小朋友那么认真,在计算中出现的错误都能诚实地说出来,而且还能把这些错误纠正过来。小精灵看在眼里,他表扬我们小朋友是个诚实懂事的好孩子,老师真为大家高兴!希望继续努力,会有更出色的表现哦。
1、课件出示课本p/80页的第4题。
蓝球足球羽毛球中国橡棋球拍。
78元60元36元10元24元。
师:观察表你看懂了什么?能提哪些数学问题吗?并解答。
学生提出了这样的问题:
(1):买3个蓝球要多少无钱?解答:78×3=234元。
(2):买5个足球要多少元?解答:60×5=300元。
(3):买4个球拍要多少元?解答:24×4=96元。
(4):买9副中国橡棋要多少元?解答:10×9=90元。
……。
(学生除了提出了乘法问题,还有加法和减法问题,老师都必须加以肯定)。
生1:我是用笔算的。
生2:有2题我是用口算的,还有2题是用笔算的。
师:你为什么又用笔算又用口算啊?
生2:因为60×5、10×9直接用口算能说出得数,那我们只要用口算就够了。
师:说得多好呀!小精灵又要夸小朋友了,他告诉小朋友如果可以口算的题目我们尽量用口算,只有自已不会口算的又要知道准确结果的必须用笔算,小朋友听到了吧!
【设计意图】:这是一个开放题的练习,老师特意改变了一些练习中的几个数据,让学生在练习提问机会的同时,让他们充他体会到在解决实问题时,会选择合理的算法,既巩固了多位数乘一位数的计算法则,也能体验到用口算很快能求得结果的快活。
2、课件出示p/82第11题。
300个同学乘车去郊游,如果每辆车可以坐78个同学,3辆车够吗?如果不够的话第4辆车需要坐多少个同学?(课件出示情景图)。
师:小朋友你们认为这道题该怎么解决?
(有的学生马上回答了问题的结果,有的则还在思考和计算之中。为了更有效地组织学生解决实际问题,我要求学生解决数学问题必须有足够的证据。)。
师:说说你是怎么想的吗?
生1:因为我是用计算3辆车能坐234个同学,就能算第4辆车要坐66个同学了。
生2:我是先估计每辆车约可以坐80人,那么3个80就能估计出3辆车只能坐240个同学。
生3:因为一辆车坐78个同学,那我只要一个一个减下去就能知道3辆车够不够,当然第4辆车还要坐多少个同学也马上可以算出来了。
3、小结:
刚才三位小朋友能用不同的方法来解决同一个问题,小精灵看到我们小朋友能力可强呢!许多同学不但掌握了计算方法,还会合理选择方法来解决数学中的问题,如有的同学会用口算,有的同学会用估算。瞧小精灵在旁边为你们鼓掌呢!(课件表示拍手的动作)。
【设计意图】:在练习三位乘一位数的笔算乘法时,让学生意识到在解决实际问题不但可以笔算,也可以用估算或口算,让他们懂得凡是只需要知道大略的结果或无法求得准确结果的,可以选择估算,凡是能够口算的题目尽量用口算,只有自已不会口算、又要得到准确结果的就必须进行笔算。这样做不但更好掌握了多种算法,还更快速有效地去解决实际问题。
(四)、综合训练激发笔算趣味。
师:小精灵看着同学们在课堂上表现很出色,他想带同学们到了趣味王国玩一玩,小朋友想吗?我们一起跟着小精灵去吧!
1、小组比赛计算。
(出示p/81第8小题)。
学生集体计算,最后师生统计结果。
2、出示数学趣味题。
(课件出示p/82第13题的找规律)。
(教师组织学生小组讨论,从中找出规律)。
【设计意图】:课尾带给学生一份趣味与快乐,让他们劳累了一节课之后来感受数学的快乐。这样的设计不但激发了学生的学习兴趣,还丰富了数学思维。
八、板书:
多位数乘一位数的笔算练习。
12×759×852×468×9314×4426×2459×7238×9。
(1)12(2)52(3)426(4)459。
×7×4×3×7。
----------------。
742812683223。
忘记加后面的进上来的数。
进位时加错。
错用进上来的数去乘另一个因数。
三年级可能性人教版教案篇十六
[教学内容]摸球游戏(第87页)。
[教学目的]通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。
[教学过程]。
1、交流中复习旧知。
师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:(1)你认为小青摸出的球可能是什么颜色?(2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。
2、在分析中理解数的表示方法。
师:现在盒子里只有2个红球,能否摸到白球呢?生:不能。因为盒子里没有白球。师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?生:用0,因为0代表没有。那么摸出红球的情况呢?生:一定能摸到红球,因为盒子里都是红球。师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)。
3、在观察、讨论中理解数的表示方法。
师出示一个只有1个红球与一个白球的盒子。
师:从这个盒子中摸到红球的可能性是多少呢?
生:摸到红球的可能性是一半。
师:如果用数来表示摸到红球的可能性,可以怎样表示?
生:12。
师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)。
4、课堂练习:
87页1题、2题。(生小组讨论)。
5、归纳小节:用数据表示可能性大小的方式。(可让学生自己总结,也可师生共同归纳总结)。
6、布置作业:
87页下面的实践活动题。
第2课时。
[教学内容]数学游戏(第88页、89页)。
[教学目的]本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。
[教学过程]。
1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。
2、组织活动。
(师给每组口袋内准备的白球与红球数的比例应相同。)。
学生两人一组,一人摸球,一人记录。
活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。
3、汇报交流并猜想。
每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。
4、验证猜想。
请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。
5、小组讨论。
投影出示讨论的题目包括表格。然后出示问题。
注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。
6、课堂练习。
89页第3题。
提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。

一键复制