在制定教案的过程中,教师需要充分考虑学生的特点和需求。教案的编写要注重培养学生的自主学习能力和合作精神。不同学科的教案范文,涵盖了不同教学内容和教学方法,欢迎大家阅读参考。
人教版高中数学必修三教案篇一
我有一个梦想》是美国著名黑人民权运动领袖马丁·路德·金激情澎湃、气势昂扬的演讲稿。20世纪50到60年代的美国,种族歧视和种族压迫现象仍然十分严重。从中可见,本文体现的自由、平等观念及为自由而进行和平抗争的呼唤则是教师应该重点推敲的内容,从背景入手,逐层点拨,最终突出教学的重点。
人教版高中数学必修三教案篇二
函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。
1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。
3.函数方程思想的几种重要形式。
(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
人教版高中数学必修三教案篇三
函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。
本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。
二、重难点分析。
根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析。
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
四、目标分析。
1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。
2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。
3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。
五、教法学法。
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
2、设计理念。
3、教学目标。
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点。
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析。
6、教法分析。
7、学法分析。
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
人教版高中数学必修三教案篇四
一)、培养良好的学习兴趣。
1、课前预习,对所学知识产生疑问,产生好奇心。
2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
3、思考问题注意归纳,挖掘你学习的潜力。
5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
二)、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
三)、有意识培养自己的各方面能力。
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
人教版高中数学必修三教案篇五
这篇课文可讲的东西实在是太多,而时间只有一节课,如果面面俱到,什么都讲,那么最终的结果只可能是浮光掠影,面面俱不到。所以在教学目标的确立上,我把切入点放在本文体现的自由、平等观念及为自由而进行和平抗争的呼唤上,从背景入手,逐层点拨,最终突出教学的重点。
2.通过师生间的交流,营造良好的课堂氛围,可促进教学任务的完成。
我一直认为语文教学的效果在一定程度上与良好的师生关系相关,所以,在日常教学中,我总是积极地和学生进行交流,这次开课,听课的老师很多,学生难免有些紧张,所以一开始我播放了学生所熟悉的一首英文歌曲ihaveadream,缓和气氛,活跃课堂,并自然而然地导入到马丁·路德·金的梦想,带领学生进入课文的探究学习中。
3.把教师的“给”变成学生的自主探究发现,是今后教学中努力的方向。
这堂课,我虽然设计了一些问题来引导学生解读文本归纳方法,但教师“给”的痕迹还是比较明显的,学生在一定程度上还是处于一种被动学习的状态。
追求永远在路上,相信通过不断的实践,我们一定会越来越成熟的。
人教版高中数学必修三教案篇六
一、教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.
二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.
三、教学方法:阅读材料、思考与交流。
四、教学过程。
(一)、普查。
1、【问题提出】p7。
通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.
教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.
2、【阅读材料】p4。
“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作.进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性.
普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.
普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.
普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.
(二)、抽样调查。
【例1和其后的“思考交流”】p8~9。
紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.
【例2和其后的“思考交流”】p9~10。
主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的.误差.
由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.
抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.
解:统计的总体是指该地10000名学生的体重;个体是指这10000名学生中每一名学生的体重;样本指这10000名学生中抽出的200名学生的体重;总体容量为10000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.
例2为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:
a.测量少年体校中180名男子篮球、排球队员的身高;。
b.查阅有关外地180名男生身高的统计资料;。
c.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.
解:选c方案.理由:方案c采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.
例3中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.
甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.
乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.
丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.
请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?
解:综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.
(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.
(四)、作业:p10练习题;p10【习题1―2】。
五、教后反思:
人教版高中数学必修三教案篇七
本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,
位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
1.1正弦定理和余弦定理(约3课时)
1.2应用举例(约4课时)
1.3实习作业(约1课时)
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
人教版高中数学必修三教案篇八
1、了解托尔斯泰及其代表作品,了解《战争与和平》的内容和主旨。
2、通过文本分析,把握少女娜塔莎的思想感情,分析人物形象。
3、通过娜塔莎形象分析,了解和掌握刻画人物的艺术手法。
4、了解“圆形人物”与“扁平人物”。
1、心理描写和语言描写对娜塔莎这一人物形象的刻画作用。
2、对作为圆形人物的娜塔莎这一人物形象的复杂个性的理解。
一、文学常识:
1、作家简介:
列夫·托尔斯泰,19世纪俄国最伟大的现实主义作家。他的思想中充满着矛盾,这种矛盾正是俄国社会错综复杂的矛盾的反映,是一个富有正义感的贵族知识分子在寻求新生活中,清醒与软弱、奋斗与彷徨、呼喊与苦闷的生动写照。他被列宁称为“俄国革命的镜子”。有人评价他是“从文艺复兴以来,惟一能挑战荷马、但丁与莎士比亚的伟大作家”。托尔斯泰是俄罗斯文学创作时间最长、作品数量最多、影响最深远、地位最崇高的作家,是大师中的大师。
代表作品有长篇历史小说《战争与和平》《安娜·卡列宁娜》和最后一部长篇小说《复活》,以及自传体小说三部曲《幼年》《少年》《青年》。
2、作品简介:
《战争与和平》一直被人称为“世界上最伟大的小说”。它长达一百三十多万字,是列夫·托尔斯泰历经7年艰辛创作的鸿篇巨制,被列宁称为“了不起的巨著”。小说的主要情节就是围绕着保尔康斯基、别素霍夫、罗斯托夫、库拉金四大贵族家庭的生活展开的。小说的主人公是安德来·包尔康斯基、彼埃尔·别素霍夫和娜塔莎·罗斯托娃。
安德来和彼埃尔是探索型的青年贵族知识分子。安德来性格内向,意志坚强,有较强的社会活动能力,他后来投身军队和参与社会活动,在严酷的事实面前逐步认识到上层统治阶级的腐败和人民的力量。
彼埃尔心直口快,易动感情,缺少实际活动能力,更侧重于对道德理想的追求,后来主要在与人民的直接接触中精神上得到成长。
女主人公娜塔莎与两位主人公的关系使她成为小说中重要的连缀人物,而这一形象本身又是个性鲜明、生气勃勃的。小说充分展开了娜塔莎热烈而丰富的情感,她与人民和大自然的接近,她的民族气质,以及她在精神上的成长。这几个主要人物形象都具有较高的认识价值和审美价值。
选文内容为安德烈·保尔康斯基因贵族会之事而去拜托罗斯托夫伯爵,在伯爵家他被充满生命力的年轻小姐娜达莎深深地吸引了。但由于秃山老公爵强烈反对,只好互相约以一年的缓冲期,而后,安德烈·保尔康斯基即出国去了。但是,年轻的娜达莎无法忍受寂寞,且经不起彼尔之妻爱伦的哥哥阿纳托尔的诱惑,而擅自约定私奔,因此,与安德烈·保尔康斯基的婚约即告无效。安德烈·保尔康斯基于多勃琪诺战役中身受重伤,娜达莎于伤兵中发现将死的安德烈·保尔康斯基。她向他谢罪并热诚看护他,但一切都是徒劳了,安德烈·保尔康斯基仍然逃不过死亡之神而去世了。
小说的最后一卷,彼埃尔回到莫斯科。他把自己在战争中的历险经过讲给娜塔莎听。他们互相爱慕起来。1813年,他们结了婚,组成一个幸福的家庭。
人教版高中数学必修三教案篇九
掌握三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
教学重难点。
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0.001).
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:。
(1)根据图象建立解析式;。
(2)根据解析式作出图象;。
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
人教版高中数学必修三教案篇十
1.掌握数轴的三要素,能正确画出数轴。
2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。
【过程与方法】经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系。
【情感态度与价值观】感受数形结合的.思想方法;
【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。
【教学难点】利用数轴比较有理数的大小。
(一)创设情境,引入课题。
(1)(出示投影1)问题:三个温度计所表示的温度是多少?
学生回答.。
(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。
(二)得出定义,揭示内涵。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):
(1)画直线,取原点。
(2)标正方向。
(3)选取单位长度,标数(强调:负数从0向左写起)。
概念:规定了原点、正方向和单位长度的直线叫做数轴。
(三)强化概念,深入理解。
1、下列图形哪些是数轴,哪些不是,为什么?
学生回答,相互纠正,理解数轴三要素,巩固数轴概念。
2、学生自己在练习本上画一个数轴。教师在黑板上画。
(四)动手练习,归纳总结。
1、在数轴上的点表示有理数。
一个学生在黑板上完成,其他同学在自己所画数轴上完成。
明确“任何一个有理数都可以用数轴上的一个点来表示”
2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育。
3、通过数轴比较有理数的大小。观察类比温度计回答问题。
(1)在数轴上表示的两个数,(右)边的数总比(左)边的数大;
(2)正数都(大于)0,负数都(小于)0;正数(大于)一切负数。
例1、比较下列各数的大小:-1.5,0.6,-3,-2。
巩固所学知识。
(五)、归纳小结,强化思想。
师生总结本课内容。
1、数轴的概念,数轴的三要素。
2、数轴上两个不同的点所表示的两个有理数大小关系。
3、所有的有理数都可以用数轴上的点来表示。
师:你感到自己今天的表现怎样?
习题2.21、2、3。
选作第4题。
人教版高中数学必修三教案篇十一
(二)倍角公式。
2cos2α=1+cos2α2sin2α=1-cos2α。
注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。
注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。
(2)对公式会“正用”,“逆用”,“变形使用”;。
(3)掌握“角的演变”规律,
(4)将公式和其它知识衔接起来使用。
重点难点。
重点:几组三角恒等式的应用。
难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式。
人教版高中数学必修三教案篇十二
本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。
本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。
更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。
因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。
二、教学目标定位。
为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:。
一、知识与技能。
理解合力、分力、力的合成的概念理解力的合成本质上是从等效的角度进行力的替代。
探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。
二、过程与方法。
通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。
通过实验探究方案的设计与实施,体验科学探究的过程。
三、情感态度与价值观。
培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。
培养认真细致、实事求是的实验态度。
根据以上分析确定本节课的重点与难点如下:
一、重点。
合力和分力的概念以及它们的关系。
实验探究力的合成所遵循的法则。
二、难点。
平行四边形定则的理解和运用。
三、重、难点突破方法——教法简介。
本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。
因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。
实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。
本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。
四、教学过程设计。
采用六环节教学法,教学过程共有六个步骤。
教学过程第一环节、创设情景导入新课:
第二环节、新课教学:
展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代法是一种重要的物理方法。
第三环节、合作探究:
首先,教师展示实验仪器,让学生思考如何设计实验,,如何进行实验呢?学生面对器材可能会觉得无从下手。再次设置问题引导学生思维,让学生面对仪器分组讨论以下四个问题。
问题1要用动画辅助说明。在问题2中,教师要强调结点的问题,用动画说明。问题3中,直观简洁的描述力必须用力的图示,用图片说明。问题4让学生注意测力计的使用,减小实验误差。通过对这四个问题的讨论,再结合多媒体动画的展示,使学生对探究的步骤清晰明了。
然后,学生分组实验,合作探究,记录合力与两分力的大小和方向,作出力的图示。实验完成后请学生展示实验结果,应该立即可得出结论一:比较分力与合力的大小,可得互成角度的两个力的合成,不能简单地利用代数方法相加减.
那合力与分力到底满足什么关系呢?
此时要引导学生思考:既然从数字上找不到关系,哪可不可以从几何上找找关系呢?学生会立即猜想出o、a、c、b像是一个平行四边形的四个顶点,ob可能是这个平行四边形的对角线.哪么猜想是否正确呢?亲自实践才有发言权,学生动手作图:以oa、oc为邻边作平行四边形oacb,看平行四边形的对角线与ob是否重合。
学生作图后发现对角线与合力很接近。教师说明实验的误差是不可避免的,科学家经过很多次的、精细的实验,最后确认对角线的长度、方向,跟合力的大小、方向一致,说明对角线就表示f1和f2的合力.由此得到结论二:力的合成法则——平行四边形定则。
进入。
第四环节:归纳总结。
将本文的word文档下载到电脑,方便收藏和打印。
人教版高中数学必修三教案篇十三
引用:本文《高中化学必修二教案(人教版)》来源于师库网,由师库网博客摘录整理,以下是的详细内容:开发利用金属矿物和海水...《基本营养物质》教案化学反应的速率和限度化学能与热能化学与资源综合利用、环...最简单的有机化合物dd...《生活中两种常见的'有机...来自石油和煤的两种基本...引用:师库网温馨提示本篇内容来源于师库网,旨在用于课件制作交流,非盈利性质,仅供参考,针对本文的问题如需了解更详细,可留言或者联系客服tags:教案、课件、师库网、教案网、课件网。

一键复制