教案的编写需要教师对所教授的知识有深入的理解和把握,能够合理安排课堂时间和教学方法。编写教案时,首先需要明确教学目标和教学重点。总结教案范文中的教学亮点和创新点可以提升教师的教学能力。
高一数学必修一教案人教版篇一
三、在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。
细胞质:包括细胞器和细胞质基质。
四、电子显微镜下看到的是亚显微结构,普通显微镜下看到显微结构。
光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁。
实验:用高倍显微镜观察叶绿体和线粒体。
健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。
材料:新鲜的藓类的叶(叶片薄,直接观察)。
菠菜叶稍带叶肉的下表皮(上表皮起保护作用,几乎无叶绿体;下表皮海绵组织,有气孔保卫细胞,有叶绿体)。
五、分泌蛋白的合成和运输。
有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)。
核糖体内质网高尔基体细胞膜。
(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)。
分泌蛋白从合成至分泌到细胞外利用到的细胞器?
答:核糖体、内质网、高尔基体、线粒体。
分泌蛋白从合成至分泌到细胞外利用到的结构?
核糖体、内质网、高尔基体、线粒体、细胞核、囊泡、细胞膜。
六、生物膜系统。
1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统。
2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。
3、内质网膜内连核膜外连细胞膜还和线粒体膜直接相连。
经过囊泡与高尔基体膜间接相连。
高一数学必修一教案人教版篇二
3.通过参与编题解题,激发学生学习的爱好.
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
实物投影仪,多媒体软件,电脑.
研探式.
一.复习提问
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第x项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,求的值.
(2)已知等差数列中,求.
若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
4.研究项的符号
这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第x项起以后每项均为负数.
三.小结
1.用方程思想熟悉等差数列通项公式;
2.用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1.方程思想的运用
2.基本量方法的使用
3.研究等差数列的单调性
4.研究项的符号
高一数学必修一教案人教版篇三
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法。
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观。
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点。
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具。
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学思路。
(一)创设情景,揭示课题。
1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知。
1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。
2.棱柱的何两个平面都可以作为棱柱的底面吗?
3.课本p8,习题1.1a组第1题。
5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化。
练习:课本p7练习1、2(1)(2)。
课本p8习题1.1第2、3、4题。
五、归纳整理。
由学生整理学习了哪些内容。
六、布置作业。
课本p8练习题1.1b组第1题。
课外练习课本p8习题1.1b组第2题。
1.2.1空间几何体的三视图(1课时)。
高一数学必修一教案人教版篇四
1、教材(教学内容)。
2、设计理念。
3、教学目标。
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点。
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析。
6、教法分析。
7、学法分析。
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高一数学必修一教案人教版篇五
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题、
用坐标法解决几何问题的步骤:
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论、
重点与难点:直线与圆的方程的应用、
问 题设计意图师生活动
生:回顾,说出自己的看法、
2、解决直线与圆的位置关系,你将采用什么方法?
生:回顾、思考、讨论、交流,得到解决问题的方法、
问 题设计意图师生活动
3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的'问题
生:自 学例4,并完成练习题1、2、
生:建立适当的直角坐标系, 探求解决问题的方法、
8、小结:
(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、
生:阅读教科书的例3,并完成第
问 题设计意图师生活动
题的需要准备什么工作?
(2)如何建立直角坐标系,才能易于解决平面几何问题?
(3)你认为学好“坐标法”解决问题的关键是什么?
高一数学必修一教案人教版篇六
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式。
会从实际情境中抽象出一元二次不等式模型.
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.
会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题。
会从实际情境中抽象出二元一次不等式组.
了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
高一数学必修一教案人教版篇七
1、使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。
2、通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
教材分析。
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
教法建议。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。
(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
高一数学必修一教案人教版篇八
(1)理解函数的概念;。
(2)了解区间的概念;。
2、目标解析。
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
【教学过程】。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。
高一数学必修一教案人教版篇九
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
高一数学必修一教案人教版篇十
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
·利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
一、练习讲解:《习案》作业十三的第3、4题。
(精确到0·001)·。
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的`进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材p65面3题。
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型·。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型·。
四、作业《习案》作业十四及十五。
高一数学必修一教案人教版篇十一
教学准备
教学目标
1、理解平面向量的坐标的概念;
2、掌握平面向量的坐标运算;
3、会根据向量的坐标,判断向量是否共线.
教学重难点
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程
平面向量基本定理:
什么叫平面的一组基底?
平面的基底有多少组?
引入:
1.平面内建立了直角坐标系,点a可以用什么来
表示?
2.平面向量是否也有类似的表示呢?
高一数学必修一教案人教版篇十二
教学目标。
熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。
掌握两角和与差的正、余弦公式,能用公式解决相关问题。
教学重难点。
熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。
教学过程。
复习。
两角差的余弦公式。
用-b代替b看看有什么结果?
高一数学必修一教案人教版篇十三
教学目标。
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点。
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程。
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;。
(3)把运算结果“翻译”成几何关系.
高一数学必修一教案人教版篇十四
细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工。
1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)。
4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。
5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。
包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)。
6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。
溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。
7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。
8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。
二、分类比较:
1.双层膜:叶绿体、线粒体(细胞核膜)。
单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)。
无膜:中心体、核糖体。
2.植物特有:叶绿体、液泡动物特有(低等植物):中心体。
3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)。
4.增大膜面积的细胞器:线粒体、内质网、叶绿体。
5.含色素:叶绿体、液泡。
6.能产生atp的:线粒体、叶绿体(细胞质基质)。
7.能自主复制的细胞器:线粒体、叶绿体、中心体。
8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体。
9.发生碱基互补配对:线粒体、叶绿体、核糖体。
10.与主动运输有关:核糖体、线粒体。
高一数学必修一教案人教版篇十五
一、创设情景,激趣导入。
学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。
二、探究体验,经历过程。
1、教学例1.
方法一:
师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。
学生可能回答;
一共有17人,9+8=17(人)。
可是,参加这两项活动的没有17人呀。
我发现有的人两项活动都参加了。
应该是一共有14人参加了,算式是9+8-3=14(人)。
师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?
生:因为有3个人重复了。
生:因为这3个人既参加了跳绳,又参加了踢毽。
生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。
生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。
师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同。
学呢?
生:14人。
方法二:
师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的`14名同学分别对应的替代其中一人,自己选一个替代的对象吧。
班内的14名学生分别选定自己要替代的人。
生:不知道站哪边。
师:哦?为什么?怎么会出现这样的情况呢?
生:站中间。
三位同学都站到了讲台的中间。
师:那左边、右边、中间分别表示什么?
生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。
方法三:
师:谁能用画图的方法来表示一下刚才看到的情形?
学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。
分组展示自己设计的图画,并介绍自己的创意或想法。
学生可能会说:
生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。
生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。
生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。
学生动手试着画图,并向全班展示。
方法四:
师:看图,说说每一部分分别表示什么?生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间既参加跳绳又参加踢毽的。
师:你能列式计算这两个小组的人数吗?
生:9+8-3=14(人)。
生:(8-3)+3+(9-3)=14(人)。
高一数学必修一教案人教版篇十六
教学目标。
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
教学重难点。
1.教学重点:两角和、差正弦和正切公式的推导过程及运用;。
2.教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
教学过程。
高一数学必修一教案人教版篇十七
(1)理解函数的概念;
(2)了解区间的概念;
(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;
【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。
问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.
1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?
1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?
设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。
问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t按照给定的`图象,都有的一个臭氧层空洞面积s与之相对应。
问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。
设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

一键复制