思考和总结,是对自己成长的一种责任和尊重。总结应注重逻辑性和连贯性,要有明确的开头、主体和结尾。这里有一些经验丰富的人士总结的范文,值得一读。
六年级数学圆教学设计篇一
教学内容:
义务教育课程标准北京实验版教科书六年级上册《存款方案》。
教学目标:
1、了解储蓄的有关知识,能综合应用相关知识合理存款。
2、经历调查、解决问题的过程,体验合作探究的学习方法。
3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。
教学重点:
了解各种存款方式的利率和相关规定,设计合理的存款方案。
教学难点:
能综合应用条件灵活解决问题。
综合实践《合理存款》。
一、确定问题。
问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)。
二、收集信息。
课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。
设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。
三、方案设计。
根据学生调查的信息设计存款方案。
学生以小组合作学习的方式共同设计方案,填写下表。
定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
六年级数学圆教学设计篇二
1、通过搭积木比赛的游戏,从三个不同的位置观察由5个小正方体搭成的立体图形,能正确辨认和画出相应的图形,发展空间观念。
2、能按照指定的从两个不同位置看到的图形,用5个小正方体搭成的立体图形。
能正确辨认和画出从正面、侧面、上面观察一组立体图形的形状。
能按照指定的`不同位置看到的图形,用几个小正方体搭成立体图形。
电脑课件正方体木块若干。
谈话法情景引入发合作探究法。
一段:学什么。
知识回顾引入课题。
1、孩子们,看见大屏幕上的图片和黑板上的表格,你想到了什么呢?
对,这节课我们就来进行一场搭积木比赛。(板书题目)。
师:相信通过大家的努力,你们一定会品尝到合作的愉快,成功的甘甜。
2、课件出示学习目标:
(1)正确辨认从不同方向观察到的立体图形的形状,并画出相应的图形.
(2)能根据从不同方向观察到的平面图形还原立体图形。确定搭成这个立体图形需要的正方体的数量范围。
二段我来学。
第一场比赛:(独立完成)。
1、课件出示要求:
2、引导学生观察,并板书(观察)。
3、学生在方格纸中画出图形。
4、汇报交流。(重点说明怎样画出从左面看到的?)。
5、课件演示。
第二项比赛(同桌合作完成)。
师:下面我们进行第二项比赛,在第二项比赛中我们进行三个回和的较量。准备好了吗?
课件出示问题要求。
(1)同桌合作完成,看看哪桌搭的多?(两个方向)。
(2)指名汇报。
师:真是太棒了,同学们有了这么多的搭法。从两各方向观察,我们不能确定立体图形的形状,但可以确定搭成这个立体图形所需要的小正方体的数量范围。那么,搭这个立体图想最多需要几个小正方体,最少需要几个小正方体呢?先猜一猜。
(3)验证(同桌合作)。
(4)从三个方向看到的图形,还原立体图形(三个方向唯一性)。
课件出示结论填空。
第三项比赛(小组合作完成)。
看谁搭的多。用六个小正方形搭一个立体图形,从上面看到的形状是。
三段我来用。
1、学生完成答题卡。
2、指名汇报答案。
一思我来思。
本节课你有哪些收获?你的感受是什么?
师总结:我们平常观察物体的时候,一定要记住“认真”二字,认真观察,再加上自己的想象,你就可以确定这些立体图形或平面图形的样子,同时,我们的空间能力和想象能力也会得到进一步的提高。
六年级数学圆教学设计篇三
苏教版义务教育教科书《数学》六年级上册第34~35页例4~5、试一试和练一练,第37页练习六第1~5题。
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
整数乘分数的计算法则。
教具:
长方形纸、水彩笔。
一、创设情境。
二、组织探究。
1、教学例4出现教材中的图形。
然后问:画斜线部分是的几分之几?又是这个长方形的几分之几?
由此明确:的是,的是。
启发学生进一步思考:求的是多少,可以怎样列式?
求的呢?
师问:你能列算式并看图填写出书中的结果吗?
打开书p34完成。
提示:根据填的结果各自想想怎样计算分数与分数相乘?
学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。
2、教学例5。
(1)让学生说说×和×分别表示的几分之几?
你能用前面得出的结论计算这两道题吗?
学生试做。
订正完后问:你能用什么方法来验证你的计算结果呢?
(2)验证比较。
让学生在自己准备的长方形纸上先涂色表示。
再画斜线表示的和的。
学生动手操作,教师巡视对学困生进行指导。
看看操作的结果与你计算的结果是否一致?
学生观察比较。
3、归纳总结。
比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?
得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
三、练习。
1、完成的试一试。
提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。
通过交流进一步明确计算分数与分数相乘的计算方法。
四、分数与分数相乘的计算方法的推广。
同学们,下面着几道题你回计算吗?
出示:
请同学们先完成p35的填空,提醒学生把整数看作分母是1的分数来计算。
讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?
学生分组讨论。
明确:(1)整数可以看作分母是1的分数,所以分数。
与分数相乘的计算方法也适用于分数和整数相乘。
(3)也可以整数与分数直接进行约分后再计算。这样更简便。
教师进行示范如p35。
2、练习。
完成p35的练一练。
引导学生用直接约分的方法进行计算。
五、综合练习。
1、做练习六的第1题。
先在图中画一画再列式计算。
2、做练习六的第3题。
说出错的原因。
3、做练习六的第4题。
看谁算的最快。
六、全课小结。
通过这节课的学习,你有什么收获?还有什么疑惑?
七、作业。
练习六的第2、5题。
六年级数学圆教学设计篇四
1、引导学生在具体的情景中借助已有的经验理解分数除法的意义并掌握分数除法的计算方法,能正确计算分数除以整数。
2、通过富有启发性的问题情景和探索性的学习活动,引导学生主动参与、独立思考、合作交流,形成计算技能。
分数除法意义的理解和分数除以整数的算法的探究。
分数除以整数的算法的探究。
课件,平均分成5份的长方形纸一张。
一、复习
复习整数除法的意义
引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
二、新授
(一)初步理解分数除法的意义。
1、如果将一盒重千克的水果平均分成5份,求其中一份是多少千克,该怎样计算?
学生试着列出算式。
2、归纳概括分数除法的意义。
(二)分数除以整数。
1、出示例1、引导学生分析并用图表示数量关系。
问:求每份是这张纸的几分之几,怎样列式?
2、列式计算。
学生折一折,算一算。
3、理清思路。
学生说思路
4、总结分数除以整数的计算方法。分数除以整数等于分数乘这个数的倒数。
三、练习
第30页做一做
四、作业练习
教材p34第1、3、4题。
五、总结
今天我们学习了哪些内容?
略
六年级数学圆教学设计篇五
设计理念:
数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。
教学目标:
1.在了解生活中有关打折优惠措施的基础上,能利用百分数的知识,根据实际情况选择最佳的方案和策略,解决实际问题,深入理解折扣的意义。
2.通过小组合作学习、分析比较,培养学生运用所学知识解决实际问题的能力、合情思考能力。
3.激发学生对数学的兴趣,使学生能够辩证、全面地思考、对待实际生活中的问题,用数学知识解决实际问题。
教学重点:
在了解生活中有关打折优惠措施的基础上,利用百分数的知识,根据不同的实际情况,通过分析比较选择最佳的方案和策略。
教学难点:
1、多种方案的计算。
2、合情推理。
教学准备:
多媒体课件一套。
教学过程:
一、创设情境,复习打折计算方法。
1.谈话导入。
2、为学生创设到快餐厅看菜单的情境,引导学生从合算的角度选择套餐。
a套餐。
原价:12.5元。
现价:10.00元。
b套餐。
原价:11.8元。
现价:10.00元。
c套餐。
原价:10.80元。
现价:10.00元。
(1)如果你去吃快餐,你选哪一种最合算?为什么?
(2)a套餐相当于打几折?
(3)b套餐也打8折,应付多少元?
二、分析比较,初用打折技能。
实际生活中的打折多种多样,要反复计算、比较,才能够选择出最好的购买方法。
1.创设情境。
现在许多餐厅可以自己带饮料消费,餐厅的饮料可挺贵,要想合算我们不妨去超市逛一逛,买一些饮料再去吃饭。
甲商场买大送小。
乙商场一律九折。
丙商场满30元一律八折。
2.了解超市的优惠政策。
师:请你举例说一说你是怎么理解这些优惠措施的?
生:买大送小就是买一瓶大的送一瓶小的,前提是必须买大瓶的饮料。
打九折就是买100元钱的饮料现在只要付90元钱。
满30元打八折就是买饮料的总价必须达到30元才能打八折,不到30元不打折。
六年级数学圆教学设计篇六
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知。
(一)比的基本性质。
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。
(1)4人小组交流(2)全班交流。
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)。
1、小组交流。
2、全班交流。
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习。
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习。
3:8=(3+6):(8+)。
(让学生分小组讨论方法)。
三、课堂总结。
这节课有哪些收获?师生共同总结。
()年()班姓名。
比的基本性质小研究。
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
六年级数学圆教学设计篇七
我的发现:
聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?
序号。
比
我的方法。
(写出过程)。
1
14:21。
2
36:15。
3
1/6:2/9。
4
2/3:3/4。
5
1.25:2。
6
5.6:4.2。
我的发现:
六年级数学圆教学设计篇八
1、通过对立体图形的复习,进一步发展学生的空间观念,掌握各个立体图形的概念、特征。
2、通过复习使学生掌握立体图形表面积、侧面积、体积的计算公式。
3、培养学生运用所学知识解决实际问题的能力。
课件
一、复习引入
1、课件出示“点’,这是一个点。
师:将点移一移,所留下痕迹,你能想到什么?生:线、直线、射线、线段。评:好,联想对学数学很重要。继续想。
师:如果将线段往下移一移,你又能想到什么呢?生:长方形、正方形
师:刚才由点联想到线段再联想到面,继续想。
师:如果把这个面往后面移一移,你又能想到什么呢?
师:如果将这个长方体像这样切成若干份,你又能想到什么呢?
(板书:长方体、正方体)
师:按这样的思路,根据圆柱,你可以想到什么?它们之间有什么关系?
师:同学们,点线面体存在一定的联系,那我们就从点线面三个方面对4个立体图形的特征进行整理。
二、知识点归纳
(一)复习立体图形特征
1、(出示长方体、正方体)长方体、正方体它们各有什么特征?它们有什么相同点和不同点,谁能看着表格说一说。(指生上来汇报,拿着模型)
长方体与正方体有什么关系?
2、(出示圆柱和圆锥)圆柱、圆锥它们又各有什么特征?
沿高剪开,侧面展开图是一个长方形或正方形。当底面周长与高相等时展开是正方形,当底面周长与高不相等时,展开是一个长方形。
3、分类,建立知识网络.
你能给这四个立体图形分分类吗?(为什么)
交流:(1)长方体、正方体一组,(都有六个面、12条棱、方方的)圆柱圆锥一组。(底面都是圆)
4、观察物体,从不同侧面看到的图形是什么形状。
(二)复习表面积和体积
2、课前老师让同学们整理了这些立体图形的表面积和体积公式,谁原意来交流一下,我们先说表面积公式(教师板书公式)。
重点:圆柱的侧面积为什么是底面周长×高?
再交流体积公式(教师板书公式)。
3、出示。
师:怎样比较这三个立体图形的体积呢?谁能列出算式?
追问:如果不计算体积结果能比较三个立体图形的体积大小吗?
(观察三个图形,有什么特点?高相等,只要看什么就可能比较体积大小了?)
操作结合板书。
你能找到计算这3种立体图形体积的统一公式吗?
小结:这三个立体图形都是柱体,像这样的三棱柱、六棱柱也都是柱体,其实所有的柱体都可以用底面积乘高来计算体积。
三、巩固练习
1、测测你的判断力
(1)体积单位比面积单位大。()
(2)把一个圆柱削成一个最大的圆锥体削去部分的体积与圆锥的体积的比是2:1。()
(3)把一个长方体铁块熔铸成一个圆柱体,形状虽然变了,但它们所占空间的大小没有变。()
(4)一个圆柱的底面直径是4厘米,高是4厘米,将这个圆柱的侧面展开后一定是一个正方形()
2、填空。
(1)一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是()厘米。
(2)把四个棱长是3厘米的正方体木块拼成一个长方体,拼成的这个长方体的表面积是(),体积是()。
(3)等底等高的圆柱的底面积是1.5平方分米,那么与它体积和高都相等的圆锥的底面积应是()平方分米。
(4)等底等高的圆柱和圆锥体积之和是36立方厘米,那么圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
3、只列出综合算式,不解答
(1)一个长方体水槽,底面积是35平方分米,水深6分米,把一个不规则的石块扔进去后,水面上升了2分米,求石块的体积。
4、提高练习
五、小结
出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?(板书表面积、问号)

一键复制