教案包括教学内容、教学方法、教学步骤等,是教师教学的指导依据。在编写教案时,应该考虑到学生的实际情况和学习兴趣,设计有趣的教学活动。借鉴他人的优秀教案可以提高自己的教学水平和效果。
方程数学教案篇一
教学内容:
教科书第12~13页,“回顾与”、“练习与应用”第1~4题。
教学目标:
1、通过回顾与,使学生进一步加深等式与方程的意义,等式的性质的理解。帮助学生理清知识的脉络,建立合理的认知结构。
2、通过练习与运用,使学生进一步掌握方程的方法和一般步骤,会列方程解决简单实际问题。
教学过程:
一、回顾与。
1、谈话引入。
本单元我们学习了哪些内容?
你能说说什么是等式的性质吗?什么是方程?什么是解方程呢?
在小组中互相说说。
2、组织讨论。
(1)出示讨论题。
(2)小组交流,巡视指导。
(3)汇报交流。
你是怎么获得这个知识的?我们在学习这个知识时运用了什么方法?
(等式与方程都是等式;等式不一定是方程,方程一定是等式。)。
(含有未知数的等式是方程。)。
(等式性质:)。
(求方程中未知数的值的过程叫做解方程。)。
同学们对这一单元的知识点掌握得很好,我们不仅要理解概念和意义,还要会熟练地运用。
二、练习与应用。
1、完成第1题。
(1)独立完成计算。
(2)汇报与展示,说说错误的原因及改正的方法。
2、完成第2题。
(1)学生独立完成。
(2)你用怎样的方法连线的?(解方程求出未知数的值;把x的值代入方程。)。
3、完成第3题。
(1)列出方程,不解答。
(2)你是怎样列的?怎么想的?大家同意吗?
(3)完成计算。
4、完成第4题。
单价、数量、总价之间有怎样的数量关系?
指出:抓住基本关系列方程,y也可以表示未知数。
三、课堂。
通过回顾与,大家共同复习了有关方程的知识,你还有什么疑问吗?
方程数学教案篇二
教学目标:
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
教学重难点:
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
教学准备:
一架天平、课件及班班通。
教学过程:
一、创设情境,以情激趣。
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知。
(一)等式两边都加上一个数。
1、课件出示天平。
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平。
操作、演示、讨论、板书:
5=55+2=5+2。
x=10x+5=15。
观察等式,发现什么规律?
3、探索规律。
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数。
观察课件,你又发现了什么?
学生汇报师板书:
x+2=10。
x+2-2=10-2。
x=8。
(三)运用规律,解方程。
三、巩固练习。
1、完成课本68页“练一练”第2题。
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结。
这节课你学到了什么?学生交流总结。
板书设计:解方程(一)。
x+2=10。
解:x+2-2=10-2(方程两边都减去2)。
x=8。
方程数学教案篇三
一、教学目标:
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
二、课时安排:
1课时。
三、教学重点:
能用等式的性质解简单的方程。
四、教学难点:
了解等式的性质。
五、教学过程。
(一)导入新课。
(板书:大象的体重=石头的重量)。
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课。
探究一:学习等式性质。
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程。
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)。
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=1223+x=45。
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测。
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x–19=2。
(2)x-12.3=3.8。
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计。
x+5=7x-5=7。
解:x+5-5=7-5解:x-5+5=7+5。
x=2x=12。
等式的两边同时加上或者减去同一个数,等式仍然成立。
方程数学教案篇四
今天,我观看了赵震老师的《认识方程》一课。这是一节朴实而又深刻的数学课,在赵老师的引领下,学生经历了一堂轻松而又收获颇多的课堂,被数学的魅力深深地打动。
一、将抽象的概念直观化。
这是一堂数学概念的学习,在课堂上,赵老师充分应用多种方式,帮助学生较好地建立了“等式”、“不等式”以及“方程”的概念。一方面,赵老师借助多媒体,充分应用了天平的直观效果,描述苹果、草莓、桔子等水果的质量,使学生能借助表象进行抽象的描述。同时在描述的过程中,赵老师并不让学生的思维停留于直观。“看谁能把自己的想法清楚、简单地表达出来?”使学生的思维逐渐从直观走向了深刻。整个学习过程,赵老师通过电脑模拟称量情景的创设,引导学生观察,用式子描述关系,从而感知“不等式”、“等式”和方程“的意义和概念,充分以学生学习活动为主体进行新知的学习。
二、注重数学文化的渗透。
赵老师在课中注重学生数学知识的`拓展,向学生介绍方程的历史,了解到数学可以描述生活中的一些现象,除了注重让学生感受数学与生活有着密切的联系,还教育学生学习就像吃饭一样,不能一口气吃个胖子,即我们是站在古人的肩膀上来学习的。
三、巩固练习,由浅入深。
课堂上,赵老师通过多种练习,巩固方程的意义和列方程的方法。根据图意列方程、根据题意列方程和乘坐公交车上下车的实际问题的练习,让学生能够用方程描述生活中的现象,进一步巩固对方程意义的理解和抓住等量关系列方程的方法。
方程数学教案篇五
教学目标:
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
教学过程:
1.出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)。
(说明两边的重量可能有三种不同的关系。)。
用式子描述重量之间的相等关系。
3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
用式子来表示比分的三种关系。
4.创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
刚才我们对情景的描述得到了很多式子。
200+200=400182318+2318+2318+=23。
280100120425+=7022y+720=1050。
1.学生尝试第一次分类。
可能有几种不同的分法。
(1)看是否是等式。
(2)看是否含有未知数。
2.学生尝试第二次分类。
得到四组不同的式子。
3.描述每一组的特征。
4.引导概括方程概念。
含有未知数的等式叫方程。
1.演示动态平衡。有等量关系,能用方程表示。
2.出示情景(没有等量关系,不能用方程表示。)。
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)。
3.通过今天这节课,你学到了什么呢?
1.周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。
2.情景图。
本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:中国台北队金牌数的16倍正好等于中国队的金牌数。女孩说:日本队的金牌数等于中国台北队的8倍。
3.开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多(用方程表示)。
方程的意义教学设计的说明。
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面举出正例或反例。
直觉层面一种数学的意识、一种方程的感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)。
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出知识胚胎的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出知识胚胎的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太散的问题。
经历问题情景数学模型解释与应用的全过程。从问题情景数学模型展开数学化和结构化的过程。再从数学模型解释与应用展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
参考文献:
(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。
(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。
方程数学教案篇六
教材第81页例3、例4,练习十六9---14题。
1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。
2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
3、能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
理解方程的含义和等式的性质。
较熟练地解简易方程,并能解决一些实际问题。
多媒体课件。
1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的`式子吗?
2、什么叫做方程的解?(使方程两边左右相等的未知数的值叫做方程的解。求方程的解的过程,叫做解方程。)。
3、解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。
4、出示例3学生交流。
5、出示例4学生交流。
1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)。
解题过程。
解:设现在平均每小时走了x千米。
2.5x=3.83。
2.5x2.5=11.42.5。
x=4.56。
答:平均每小时走了4.56千米?
2、提出问题。
这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。
(一)学生汇报各类知识。
小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(二)解方程与方程的解。
具体知识。
4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式。
补充提问:能举几个是方程的式子吗?
方程数学教案篇七
1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。
2、会用等式性质解形如x+5=12的简单方程。
3、培养观察、分析概括的能力。
1课时。
能用等式的性质解简单的方程。
了解等式的性质。
(一)导入新课。
(板书:大象的体重=石头的重量)。
师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的.策略。今天我们也要用他这个策略解决以下问题。
检查预习。
(二)讲授新课。
探究一:学习等式性质。
1、师操作:在天平两侧各放一个5克砝码。
提问:你能用一个等式表示天两边关系吗?
提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都加上同一个数,等式仍然成立。
师操作在刚才的基础上一个一个减砝码。
提问:你能用等式来表示吗?
提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?
提问:你还能用一个等式表示吗?
教师呈现其他天平直观图,鼓励学生观察并写出等式。
全班交流,
教师总结概括出等式性质。
等式两边都减去同一个数,等式仍然成立。
3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。
(三)重点精讲。
探究二:学习解方程。
师板书x+2=10问:用天平如何表示?
问:如何用刚才的知识解方程?(两边都减去2)。
1、师根据学生回答板书并画出天平图。
2、师在解题示范时要注重“解”和“等于号”的书写要求。
3、交代检验方法。
4、学生试着解方程。
y-7=1223+x=45。
组内交流收获和疑惑。
小组汇报。
教师总结板书:根据等式的性质解方程。
(五)随堂检测。
1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。
2、看图列方程,并解方程。
3、解方程。
(1)x–19=2。
(2)x-12.3=3.8。
4、看图列方程,并解方程。
5、看图列方程,并解方程。
6、看图列方程,并解方程。
板书设计。
x+5=7x-5=7。
解:x+5-5=7-5解:x-5+5=7+5。
x=2x=12。
等式的两边同时加上或者减去同一个数,等式仍然成立。
方程数学教案篇八
4、态度、情感、价值观。
4、通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情、
一、复习引入。
学生活动:列方程、
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
整理、化简,得:__________、
问题(2)如图,如果,那么点c叫做线段ab的黄金分割点、
整理,得:________、
二、探索新知。
学生活动:请口答下面问题、
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的'多项式的规定,它们最高次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
解:去括号,得:
移项,得:4x2-26x+22=0。
其中二次项系数为4,一次项系数为-26,常数项为22、
解:去括号,得:
x2+2x+1+x2-4=1。
移项,合并得:2x2+2x-4=0。
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4、
三、巩固练习。
教材p32练习1、2。
四、应用拓展。
分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可、
证明:2-8+17=(-4)2+1。
∵(-4)2≥0。
∴(-4)2+10,即(-4)2+1≠0。
五、归纳小结(学生总结,老师点评)。
本节课要掌握:
六、布置作业。
方程数学教案篇九
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
【教学过程】。
(一)创设情景,引入新课。
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授。
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)。
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零。
3:讲解例子。
5:讲解例子。
6:一般步骤。
(三)小结。
(四)布置作业。
方程数学教案篇十
(一)教材的地位和作用。
(二)教材的重难点。
二、教学目标分析。
(一)知识技能目标。
1.目标内容。
(2)培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.。
2.目标分析。
(二)过程目标。
1.目标内容。
在活动中感受方程思想在数学中的作用,进一步增强应用意识.。
2.目标分析。
(三)情感目标。
1.目标内容。
2.目标分析。
三、教材处理与教法分析。
方程数学教案篇十一
关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。
其一,对”倾斜角“概念的形成过程的教学过程中,发现普通班和重点班在表达能力上的区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”普通班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点---做直线(3条以上)----说明区别和联系---加上直角坐标系----说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。
其二,对通过的直线的斜率的求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点a(1,1),b(3,4)的直线和通过点a(1,1),c(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。
其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。

一键复制