人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
二次函数反思心得篇一
二次函数是中学数学中的重要内容,也是高考数学中的必考内容之一。作为学生,我们在备考过程中应该如何有效地掌握和应用二次函数呢?在这篇文章中,我将分享一些我在备考二次函数过程中的心得体会。
第二段:理解二次函数的定义及性质
在二次函数备考中,首先需要掌握的是二次函数的定义和基本性质。二次函数的标准形式为 $f(x)=ax^2+bx+c$,其中 $a\neq0$。二次函数的图像是一个抛物线,其开口方向由 $a$ 的正负号决定。在掌握了二次函数的定义之后,我们需要学习二次函数的性质,包括函数的单调性、极值、对称轴、零点和图像的方程等。
第三段:掌握二次函数的变形和运用
掌握二次函数的变形是备考成功的关键之一。在二次函数的变形中,常见的有平移、伸缩、翻转等变化,它们都会影响到函数的图像和性质。因此,我们需要掌握这些变形的规律和方法,以便于在实践中准确地运用。
第四段:熟练掌握二次函数的解析式
掌握二次函数的解析式也是备考二次函数的重点之一。在练习中,我们需要熟练地运用解析式,解决各种与二次函数相关的问题,如求函数的零点、极值、对称轴等,这些问题在高考中也是常见的考点。
第五段:多做例题,加深理解
在备考过程中,多做例题是加深理解的重要方法。通过做例题,我们可以运用所学知识,增强对二次函数的理解和掌握。在做题过程中,我们还要注意归纳总结,找出问题的规律和解题方法,加深对二次函数的认识。
结语:
通过以上几点,我们可以有效地备考二次函数,掌握并巩固相关知识点。我们需要注重理论学习,掌握二次函数的定义和基本性质,熟练掌握二次函数的解析式,并且通过练习加深对二次函数的理解和掌握。相信在备考过程中,只要我们持之以恒地学习和练习,就一定能够取得良好的成绩。
二次函数反思心得篇二
让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。
:二次函数表达式的形式的选择
:各种隐含条件的挖掘
:引导发现法
(一)诊断补偿,情景引入:
1、二次函数的一般式是什么
2、二次函数的图象及性质
(先让学生复习,然后提问,并做进一步诊断)
(二)问题导航,探究释疑:
(三)精讲提炼,揭示本质:
分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。
解由题意,得点b的坐标为(0。8,-2。4),
又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。
例2、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。
分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。
解这个方程组,得a=2,b= -1。
所以,所求二次函数的关系式是。
(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。
所以,所求二次函数的关系式是。
(3)因为抛物线与x轴交于点m(-3,0)、(5,0),
所以设二此函数的关系式为。
又由于抛物线与y轴交于点(0,3),可以得到解得。
所以,所求二次函数的关系式是。
(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。
(四)题组训练,拓展迁移:
1、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。
2、二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。
(五)交流评价,深化知识:
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。
本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),
(1)求该二次函数的关系式;
(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。
二次函数反思心得篇三
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
3.能够利用二次函数的图象求一元二次方程的近似根。
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导 合作交流
课件
计算机、实物投影。
检查预习 引出课题
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
二次函数反思心得篇四
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、重视每一堂复习课数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
二次函数反思心得篇五
二次函数是数学中的一门重要的内容,由于其应用广泛,所以在学习中也是需要加以重视的。在对二次函数进行复习的过程中,我深切体会到了二次函数的性质和应用的重要性。以下将就此展开,以此作为一次全面的复习心得体会。
第一段:复习的初衷和方法
对二次函数的复习是因为即将到来的考试,而在复习的过程中我发现了很多之前未曾注意到的细节。我选择了查看以往的课堂笔记,复习相关的知识点,做了一些习题和例题,并且结合了一些实际问题进行了思考。通过这样的方式进行复习,我不仅巩固了基础知识,还对二次函数的性质和应用有了更深入的了解。
第二段:二次函数的性质
在复习的过程中,我重点关注了二次函数的性质,包括定义域、值域和单调性等。通过大量的例题演算,我发现二次函数的定义域和值域都与二次函数的开口方向和平移有关。而在研究二次函数的单调性时,我发现二次函数在某个范围内可能是增函数,而在另一个范围内却是减函数。这些性质的理解对于解决实际问题中的建模和求解非常重要。
第三段:二次函数的应用
在学习中,我发现了二次函数在实际生活中的广泛应用。例如,在物理学中,自由落体运动的高度和时间之间的关系可以用二次函数来描述;在经济学中,利润和产量之间的关系也可以用二次函数来表示。这些实际问题的建模和求解都需要我们对二次函数的性质有深刻的理解,以便找到最优解或者预测未来的趋势。
第四段:解二次方程
二次函数的一个重要应用是解二次方程。在复习中,我重新温习了求解一元二次方程的方法,包括配方、因式分解和求根公式。同时,我还探究了一元二次方程的根与系数之间的关系。通过这些练习,我对于解二次方程和二次函数之间的联系有了更深刻的理解,同时也提高了解决实际问题时的应用能力。
第五段:进一步提高
二次函数的复习不仅是为了考试,更重要的是希望能够深入理解其性质和应用。在今后的学习中,我还要继续加强对二次函数的掌握,同时加强与实际问题的结合,培养自己的应用能力。此外,我还计划进一步深入研究其他高级数学知识,以不断提高自己的数学水平。
通过对二次函数的复习,我不仅对二次函数的性质和应用有了更深入的认识,而且意识到了数学知识的重要性。掌握好二次函数的知识将有助于解决实际问题和提高自己的思维能力。我会在今后的学习中持之以恒,在数学学习方面更进一步,同时也将通过数学来提升我的综合素质。
二次函数反思心得篇六
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、 重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
2二次函数教学方法一
二、 立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.
3二次函数教学方法二
1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
4二次函数教学方法三
1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。
2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
二次函数反思心得篇七
第二十六章《二次函数》是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
下面是我通过本单元的的教学后的的几点反思: “二次函数概念”教学反思
关于“二次函数概念”教后做如下反思:我的成功之处是:教学时,通过实例引入二次函数的概念, 让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。
关于“二次函数的图象和性质”教后做如下反思:我的成功之处是:在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
通过引导学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生观察图像自主探讨当a0时函数y=ax2的性质。当a
y=a(x-h)
2、y=a(x-h)2+c 的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质。达到了学习目标中的要求。
不足之处表现在:
1、课堂上讲的太多。让学生自主观察总结的机会少,学生还是被动的接受。
2、学生作图能力差。简单的列表、描点、连线。学生做起来就比较困难。作图中单位长度不准确,描点不正确,连线时不会用光滑的曲线,而是画出很难看的图形。
3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,没能培养学生的创新能力。
4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。
“求二次函数解析式”教学反思
关于“求二次函数解析式”教后做如下反思:我的成功之处是:教学中,我设计从求一次函数的解析式入手,引出求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。接着我改变条件,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快球出了顶点式的二次函数解析式。接下来,我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式,学生很快就学会了用交点式求二次函数解析式的方法。在整个教学中,教学内容、教学环节、教学方法的设计都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,调动学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。
不足之处表现在:
1、学生对新学知识理解了,但一部分学生不会解三元一次方程组。
2、少数学生对求顶点式和交点式的二次函数解析式有困难。
3、由于对学生估计不足,引导学生探究三种不同形式的函数解析式的方法用时较多,导致教学时间紧张。
“二次函数应用题”教学反思
关于“二次函数应用题”教后做如下反思:我的成功之处是:一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题,对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导学生建立平面直角坐标系,分析解决问题的方法。学生从直角坐标系中发现了抛物线上的点,我进一步引导学生找抛物线的顶点坐标,在老师的引导下,学生设出了二次函数的解析式,并将找到的已知点代入,求出了二次函数的解析式。接着我引导学生就同一问题建立不同的直角坐标系,再去找抛物线上的已知点,这是学生找到了已知点,就能判断用哪种解析式,试着求出函数的解析式。接下来,再出示例题,引导学生分析解答。学生从上面的解题过程中得到了启示,学到了解题方法。教学中,我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。所以教学方法的设计较完美,并且教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以较好的达到教学目标。
不足之处表现在:
1、少数学生对于建立平面直角坐标系有困难。不会根据抛物线正确建立坐标系
2、少数学生不会分析题意,不能正确列式求出二次函数的解析式
3、学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
4、少数学生不会将二次函数的一般式配方转化为顶点式;不会利用顶点式求函数的最大值或最小值。
总之,本单元的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。
二次函数反思心得篇八
近日,我在数学课上进行了二次函数的复习,通过这一过程,我深深体会到了二次函数的重要性和应用价值。以下是我对此的心得体会。
在复习过程中,我首先意识到了二次函数在现实中的广泛应用。二次函数可以描述物理学、经济学、生物学等各个领域的现象。例如,在物理学中,抛物线的轨迹就可以由二次函数来描述。另外,数学模型也常常采用二次函数来分析和预测实际问题的发展趋势。因此,了解和掌握二次函数的知识对我们理解和处理各种实际问题具有重要意义。
其次,我对二次函数的图像和性质有了更深入的认识。通过画图和求解方程,我发现二次函数的图像是一个抛物线。这个抛物线在坐标轴上的交点称为零点,也就是方程的解。而顶点则是抛物线的最高点(对于开口向上的抛物线)或最低点(对于开口向下的抛物线)。了解这些性质有助于我们更方便地分析和解决问题,比如在最值求解或方程解析方面。
进一步地,我也深入研究了二次函数的预测和建模。通过给定一些历史数据,我们可以使用二次函数来预测未来的趋势和结果。例如,在经济学中,我们可以利用二次函数来预测某个市场的发展趋势,帮助企业做出更准确的决策。此外,二次函数还可以用于优化问题的建模,比如求解最值问题。通过对二次函数进行求导,我们可以得到函数的最值点,从而可以找到问题的最优解。
最后,我认识到二次函数对于我们的数学思维能力和解决问题的能力的培养具有重要意义。在学习二次函数的过程中,我们需要通过观察和分析,运用数学知识来解决问题。这种思维方式的培养,不仅可以帮助我们更好地理解和掌握二次函数,还可以提升我们的数学思维能力,培养良好的逻辑思维和问题解决能力。这对于我们未来的学习和工作都十分重要。
通过本次二次函数的复习,我对二次函数的重要性和应用价值有了更深入的理解。在实际生活中,我们不仅要关注数学知识的学习和应用,更要培养好的数学思维能力和解决问题的能力。只有这样,我们才能更好地应对未来的挑战,发现数学背后的美妙和智慧。
二次函数反思心得篇九
在高中数学教学中,二次函数是一个十分重要的内容,因为它在生活中有着广泛的应用。其中一项常见的应用就是在测量中。通过实验数据,我们可以得到一个二次函数的模型,从而对实验数据进行预测和分析。在我学习二次函数的过程中,也有幸进行了一些测量实验,并对二次函数的应用有了更深刻的体会。
第二段:实验过程
实验过程中,我选择了抛物线的测量,通过测量物体的高度、时间和落地点坐标,我们可以得到一个二次函数的模型,从而计算出物体的初始速度、最大高度等一系列数据。在测量过程中,我们需要非常仔细地进行实验,例如保证实验地点平整、避免风的影响等。同时还需要使用专业的测量设备,例如光电门、计时器等。
第三段:实验数据
通过实验得到的数据,我们可以将其代入二次函数的模型中,从而得出真实的情况。通过这些数据,我们可以进行更多的分析,例如绘制出物体的抛物线轨迹图、比较不同物体的抛物线图形、计算出物理量等。这些数据不仅可以用于学术研究,也可以应用到实际生活中,例如建造各种结构或者选购适当的工具等。
第四段:二次函数的应用
二次函数在生活中有着广泛的应用。例如在物理学中,我们经常使用二次函数来计算物体的运动情况;在经济学中,我们可以利用二次函数来研究产品销量与销售价格的关系等。二次函数也常常被应用到工程设计中,因为它可以很好地表示众多物理量的关系。这些应用都需要我们深入理解二次函数,从而得出更为准确和实用的数据。
第五段:结论
二次函数测量实验不仅需要我们对数学知识的掌握,还需要我们有耐心和细心地分析实验数据。通过实验,我们可以更深刻地理解二次函数,掌握其应用技巧,并将其运用到更多领域中。在今后学习过程中,我们应该对二次函数的知识保持持续关注和深入学习,从而更好地理解它的神奇之处。
二次函数反思心得篇十
1 说地位:二次函数是在一次函数,反比例函数的基础上,对函数的认识的完善与提高;也是对方程的理解的补充。而本节课的内容,是对二次函数y=ax2+bx+c中系数,a,b,c功能的探究,意在深化学生对二次函数图象及其性质的进一步理解,在每年中考中,此内容都占有一定的分量,不可小视。
2 说联系:通过对y=ax2+bx+c中a,b,c功能的探究,进一步巩固前面所学的图象及其性质,为后面学习二次函数的应用作基础,激发学生学习数学的热情。
3 说课标:结合前后知识,我把这节课的教学目标定为两点,一是熟练掌握y=ax2+bx+c中系数a,b,c的作用,二是进一步体会函数里数形结合的思想。
4 说内容:本节课首先通过学生对前面所学知识的掌握,归纳总结出y=ax2+bx+c中a,b,c不同的取值对其图象位置的影响,然后通过4个例题,从不同角度,刻画出a,b,c的取值对函数图象位置的影响,每种例题都配有1-2个练习,供巩固提高,最后小结。
本节课书上没有独立成节,是我根据多年教学经验,积累沉淀下来的。本节课的例题是我在前几年的中考试题中捡拾出来,有些题目还做过删减,或者改动,最终还剩下4个例题6个配套练习。学习内容基本上按先易后难的原则,螺旋上升,循序渐进。
说教学目标:根据课标要求,结合各地中考试题类型,以及学生认知特点,我把这节课的教学目标定为(1)认知目标:根据a,b,c不同的取值范围,确定抛物线的大致位置,反过来,根据抛物线的大致位置,确定a,b,c的取值范围。(2)通过探究,培养学生数形结合的数学思想,掌握学函数的基本方法。
说重、难点:根据这节课的内容,结合学生特点,我把这节课的教学重点定为:弄清y=ax2+bx+c中a,b,c的取值对函数图象的影响。教学难点定为:体会函数中数形结合的思想。通过图象求取值,根据取值找大致的图象。
1 说教法:本节课通过师生互动探究式教学,以课标为依据,渗透新的教学理念,遵循教师为主导,学生为主体的原则,结合九年级学生的求知心理和已有的认知水平开展教学,形成学生自动,生生互助,师生互动。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高,思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2 说学法:就课标明确提出要培养可持续发展的学生,因此教师有组织,有目的,有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方法。培养学生动手,动脑,动口的习惯与能力,使学生真正成为学习的主人。
本节课我设为四个模块,第一块是温故引标,先复习抛物线在不同位置情形下时,它的一般解析式,然后引出这节课的内容,探讨二次函数中a,b,c的功能。第二块是合作交流,归纳总结。分组活动,归纳总结出a,b,c的作用。第三块是例题剖析,巩固提高,第一个例题配套1-2个练习,增强学生的解题能力。第四块是小结,反思。让学生对本节课所学内容有一个清晰的认知。
1 说板书设计:根据学生的认知规律,我把这节课的内容设为两大块,第一块归纳总结,第二块分4个例题。中间2个,右边2个,相互衔接,浑然一体。
2 说反思:本节课既可以说是上新课,也可以说是一节复习课,因而所教内容,一部分同学都有能力独自完成,还有一部分同学需要老师引导才能完成。设计的内容比较单一,训练的题目能否多一点,力争大容量,快节奏,高效益。
二次函数反思心得篇十一
从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!
对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。
对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。
二次函数反思心得篇十二
二次函数是高中数学中学习的一个重要的内容,它不仅在科学、工程、经济等领域有着广泛的应用,同时还是求解各种问题的重要工具。而在实际生活中,二次函数也有很多的运用,比如在建筑工程中求解抛物线或拱形物体的形状,或者辅助医学人员测量人体数据。本文主要通过个人的学习经历和应用实践,分享一些关于二次函数的测量心得体会。
第二段:学习与掌握
学习二次函数时,我们首先需要掌握函数的基本知识,包括函数的定义、性质、图像等。同时,我们还需要深入理解二次函数的特点和应用,掌握二次函数的变形、平移、缩放等技巧,以及如何利用二次函数求解实际问题。学习这些内容需要不断进行练习和实践,比如做习题、探究性的实验、运用软件进行模拟演示等等,重复操作带有相同的参数值可以让我们更好的掌握常见的二次函数特征,加上多样的实验可以对二次函数的应用产生更深刻的理解,这就需要我们对二次函数的学习持续耐心而扎实的进行。
第三段:应用实践
在实际应用中,我们可以将二次函数用于体育锻炼、医疗测量和建筑工程中。比如在体育锻炼中,通过二次函数的分析和拟合,可以帮助运动员更好地制定训练计划,提高训练效果。在医疗测量中,利用二次函数可以辅助医生测量患者的生理数据,包括身高、重量、头围等,进而准确地了解患者的生理状况。此外,在建筑工程中,二次函数可以用于分析建筑物的结构和稳定性,以及制定建筑物的施工计划。
第四段:心得体会
在我个人的学习和实践过程中,我深刻感受到了二次函数的应用价值和实际意义。通过学习二次函数,我打开了一扇通向科学和技术的大门,对数学的意义和价值有了更深刻的认识。同时,在实践应用中,我深刻领悟到只有将理论知识和实际问题相结合,才能更好地理解和应用二次函数,因此,对于二次函数的学习和掌握,不仅需要理论知识,更需要大量的实践和探究。
第五段:总结与展望
在二次函数的学习中,我们需要认真掌握函数的基本知识和应用技巧,多进行实践和探究,结合实际问题进行分析和求解。通过不断的练习和实践,提高我们对于二次函数的认识和掌握,帮助我们更好地应用二次函数解决实际问题。 总而言之,在二次函数的学习和实践过程中,我们需要深入理解其意义和应用价值,并结合具体问题和应用场景进行掌握,以此提高我们对数学进行应用和创新的能力。
二次函数反思心得篇十三
11月18日,我在九年三班上了《2.1 二次函数所描述的关系》这节课,结合一些听课老师的建议,现总结教学反思如下:
1.对二次函数的学习,本节课通过丰富的现实背景和学生感兴趣的问题出发,以多媒体演示图片的形式使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动,通过学生之间的合作与交流,通过分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。
2.在新知巩固环节,我精心设计了具有代表性和易错题型的问题,巩固应用了本节的新知,课堂达到了较好的教学效果。
3.在合作讨论的环节中,银行利率问题中文字叙述不够严密,两年后的利息一句产生分歧,应该改成第二年的利息。
4.在课堂时间的安排上不算太合理,有一道能力提升的问题没讲。总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。

一键复制