我们得到了一些心得体会以后,应该马上记录下来,写一篇心得体会,这样能够给人努力向前的动力。我们如何才能写得一篇优质的心得体会呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。
高一数学必修一心得体会篇一
高中数学是学生们的一项重要学科,而必修一数学更是高中数学的第一个重要阶段。我在高一的学习过程中,深受必修一数学的影响和启发,通过不断的学习和思考,我积累了一些心得体会,我相信这些体会也会对其他高一学生有所帮助。
第二段:算法的学习
在必修一数学中,我们首先学习了一些基础的算法,如整式的加减乘除、分式的化简、方程的解法等等。通过这些算法的学习,我深刻认识到数学的逻辑性和严谨性。在解题过程中,我不再盲目地试错,而是通过运用正确的算法来解决问题。此外,我还学会了将一些复杂的问题进行拆解和转化,使得问题变得简单明了,更易于解决。
第三段:推理证明的训练
在必修一数学中,推理证明的内容占据了很大一部分。通过证明题的练习,我逐渐培养起了一种思考问题和解决问题的能力。在推理证明中,要注意理清思路,合理运用数学定理和公式,严谨地逐步推导,以确保每个步骤都是正确的。通过这样的训练,不仅提高了我的逻辑思维能力,还培养了我的数学严谨性和思辨能力。
第四段:几何知识的应用
必修一数学中也涉及到了一些几何知识,如平面几何、立体几何等。这部分内容要求我们灵活掌握几何定理和原理,运用几何知识解决实际问题。在初学时,我对这方面的内容感到有些困难,但通过不断的练习和思考,我逐渐掌握了一些解题技巧。在做几何题时,我会先仔细阅读题目,理清题目的要求和给出的条件,然后结合几何定理和原理,分析问题并提出解决方案。通过这样的训练,我发现几何知识的应用不仅可以提高我的空间思维能力,还能锻炼我的问题分析和解决问题的能力。
第五段:数学与实际的联系
必修一数学不仅仅是为了应对考试,更重要的是数学在我们日常生活中的实际应用。通过学习必修一数学,我意识到数学是一种工具和思维方式,可以帮助我们更好地理解和解决现实生活中的问题。例如,在学习统计与概率时,我了解了数据的收集和分析方法,以及概率的计算和应用。而这些知识在实际问题中能够帮助我们科学地分析数据,做出合理的判断和决策。
总结:
通过学习必修一数学,我收获了很多。除了掌握了一些基础的算法和推理证明的方法外,我还培养了逻辑思维能力和问题解决能力。几何知识的应用和数学与实际的联系都让我更深入地理解了数学的意义和作用。我相信这些心得体会对其他高一学生来说也会有所帮助,希望大家能够善于思考,主动学习,不断提高自己的数学水平。
高一数学必修一心得体会篇二
一、自主学习
1.阅读课本练习止。
2.回答问题:
(1)课本内容分成几个层次?每个层次的中心内容是什么?
(2)层次间的联系是什么?
(3)对数函数的定义是什么?
(4)对数函数与指数函数有什么关系?
3.完成练习。
4.小结。
二、方法指导
1.在学习对数函数时,同学们应从熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。
2.本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开,同学们在学习时应该把两个函数进行类比,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质。
一、提问题
1.对数函数的自变量和函数分别在指数函数中是什么?
2.两个函数如果互为反函数,则他们的值域,定义域有什么关系?
3.是否所有的函数都有反函数?试举例说明。
二、变题目
1.试求下列函数的反函数:
(1);(2);(3);(4)。
2.求下列函数的定义域:
(1);(2);(3)。
3.已知则=;的定义域为。
1.对数函数的有关概念。
(1)把函数叫做对数函数,叫做对数函数的底数。
(2)以10为底数的对数函数为常用对数函数。
(3)以无理数为底数的对数函数为自然对数函数。
2.反函数的概念。
在指数函数中,是自变量,是的函数,其定义域是,值域是;在对数函数中,是自变量,是的函数,其定义域是,值域是,像这样的两个函数叫做互为反函数。
3.与对数函数有关的定义域的求法:
4.举例说明如何求反函数。
一、课外作业:习题3-5a组1,2,3,b组1,
二、课外思考:
1.求定义域:
2.求使函数的函数值恒为负值的的取值范围。
高一数学必修一心得体会篇三
教学准备
教学目标
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重难点
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程
由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题,下面我们通过几个具体实例,说明向量方法在平面几何中的运用。
思考:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
高一数学必修一心得体会篇四
数学作为一门理科学科,对于学生来说既是必修科目,也是竞赛科目。在高中阶段,数学必修一是数学学科的入门课程,为后续学习奠定了重要的基础。在这一学期的学习过程中,我深刻体会到了数学的重要性和学习数学的方法。下面,我将从四个方面分享我的心得体会。
首先,学会理解数学的概念和原理。数学是一门逻辑性很强的学科,在学习过程中,我意识到理解数学的概念和原理是十分重要的。我们在学习数学概念的时候,不要只停留在背诵的阶段,而是要深入理解其背后的原理。只有通过真正理解,才能更好地应用这些概念解决问题。另外,数学概念之间的联系也非常重要,我们应该学会将各个概念联系起来,形成一个完整的认知体系,这样才能更好地应对复杂的数学问题。
其次,掌握数学的基本方法和技巧。数学学科有着独特的解题方法和技巧,学会这些方法和技巧对于数学学习至关重要。例如,简化问题、分类讨论、建立方程等方法都是解决数学问题的常见技巧。在学习过程中,我们要注重学习和掌握这些方法和技巧,并且在解题实践中有意识地运用它们。通过反复练习和积累,我们可以逐渐提高解题的效率和准确性。
第三,注重数学思维的培养。数学学科有着自己的思维方式,这是我们在学习过程中应该注重培养的。数学思维包括逻辑思维、抽象思维和问题思维等。逻辑思维是指根据已知条件和已有结论,通过推理和演绎,得出新的结论的过程。抽象思维是将具体的事物或概念抽象为符号或公式,以便更好地进行推理和计算。问题思维是解决复杂问题的能力,需要我们能够准确把握问题的关键点和难点,通过分析、推理和探究找到解决问题的方法。
最后,要培养良好的数学学习习惯。数学学习需要一定的方法和坚持,我们要养成良好的学习习惯。首先,要定期复习和总结所学的知识,巩固和强化学习效果。其次,要积极参加课堂讨论和练习,主动思考和提问。通过与同学合作、与老师互动,我们可以更好地理解数学知识和提升解题能力。另外,数学习惯还包括做题的方法和分工。对于一些习题,我们应该摒弃“做就完事”、“看答案就知道”等思维方式,而是要仔细思考并多次尝试,从错误中汲取经验教训。
总之,通过高一数学必修一的学习,我深刻体会到数学的重要性和学习数学的方法。在以后的学习中,我将继续努力,保持良好的学习态度,不断提高自己的数学能力。相信在接下来的学习中,我一定能够更好地应对各类数学问题,取得更优异的成绩。
高一数学必修一心得体会篇五
2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与编题解题,激发学生学习的爱好.
教学重点是通项公式的熟悉;教学难点是对公式的灵活运用.
实物投影仪,多媒体软件,电脑.
研探式.
一.复习提问
等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.
二.主体设计
通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求).找学生试举一例如:“已知等差数列中,首项,公差,求.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.
1.方程思想的运用
(1)已知等差数列中,首项,公差,则-397是该数列的第x项.
(2)已知等差数列中,首项,则公差
(3)已知等差数列中,公差,则首项
这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.
2.基本量方法的使用
(1)已知等差数列中,求的值.
(2)已知等差数列中,求.
若学生的题目只有这两种类型,教师可以小结(请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题.解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量.
教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的`制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).
如:已知等差数列中,…
由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….
类似的还有
(4)已知等差数列中,求的值.
以上属于对数列的项进行定量的研究,有无定性的判定?引出
3.研究等差数列的单调性
4.研究项的符号
这是为研究等差数列前项和的最值所做的预备工作.可配备的题目如
(1)已知数列的通项公式为,问数列从第几项开始小于0?
(2)等差数列从第x项起以后每项均为负数.
三.小结
1.用方程思想熟悉等差数列通项公式;
2.用函数思想解决等差数列问题.
四.板书设计
等差数列通项公式1.方程思想的运用
2.基本量方法的使用
3.研究等差数列的单调性
4.研究项的符号
高一数学必修一心得体会篇六
高一数学学习技巧
1.要读好课本
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。
2.要记好笔记
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
3.要做好作业
在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。
4.要写好总结
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。“不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。”自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。
通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
2怎样把高中数学学好
1.课前预习教材。课前可以把教材上第二天老师要讲的内容看一下,看看哪些能看懂,哪些不懂。这样老师在讲课的时候我们就能带着问题去听,把自己没看懂的问题听懂。
2.上课专心听讲。这是很重要的,很多同学以为自己什么都弄懂了,就自己做自己的题目。其实即使是自己看懂了的,也可以看看老师也没有另外的理解方法,老师的方法是不是比自己好。听老师有时候讲比自己看更好。
小编推荐:高一数学怎么学才能学好
3.课后认真复习。刚学的知识,还没完全被消化吸收成为自己的知识,如果不及时复习,就很容易忘记。所以,课后一定要抽出一些时间,及时对所学进行巩固。
4.通过习题巩固。数学是理科,需要通过一定量的习题来巩固,量变积累到了一定量才能质变嘛。这个并非要各位打题海战术,只要求各位做到熟练为止。
5.错题反复研究。自己准备一个错题本,把考试时候做错的题目记录下来,写上做错的原因,反复研究,避免再次出错。
高一数学必修一心得体会篇七
数学作为一门学科,对于学生来说有着重要的地位。而高一的数学必修一课程,是我们对数学知识系统的全面认识和学习的开始。通过学习必修一这门课程,我深刻认识到数学的重要性和广泛应用性。无论是在学习其他学科,还是日常生活中,数学都扮演着重要的角色。因此,我对学习必修一的态度变得更加认真和积极。
第二段:学习方法的转变
高一数学必修一的学习内容相对较难,需要我们具备良好的数学思维和逻辑推理能力。在学习过程中,我逐渐意识到了学习方法的重要性。我开始注重听课的同时,积极参与课堂互动和讨论。通过与同学的交流,我不仅能加深对知识点的理解,还能提高自己的表达能力。此外,我还坚持做大量的习题,并及时纠正错误,加深对知识点的理解。这种学习方法的转变使我在数学学习中取得了更好的效果。
第三段:培养数学思考能力
高一数学必修一的学习不仅仅是对知识的学习,更是对思维能力的培养。从解决实际问题的角度出发,我们需要掌握科学的数学方法,善于将抽象的数学知识应用到实际生活中。通过解题的实践,我逐渐培养了自己的数学思考能力。在解决问题的过程中,我不再依赖于死记硬背,而是通过分析、归纳和推理,形成自己的解题思路,从而找到解题的方法并得出正确答案。
第四段:数学与其他科目的联系
高中阶段的学习,各个学科之间的联系日益明显。数学作为一门基础学科,与其他学科的联系尤为紧密。在学习高一的数学必修一课程中,我逐渐发现数学与物理、化学等学科之间存在着深刻的联系。例如,在物理学中,数学的运算和公式推导起到了重要的作用;在化学学科中,化学方程式的平衡和计算也需要辅以数学的知识。这让我更加明确了数学在其他学科中的必要性,加深了对数学学习的重视。
第五段:数学学习的意义与收获
通过高一数学必修一的学习,我不仅掌握了更多的数学知识,还培养了数学思维和解题能力。数学学习的最大收获在于培养了我逻辑思维和分析问题的能力。在解决实际问题时,我能思路清晰地进行分析,并通过数学方法找到解决问题的途径。这种思维方式使我在其他学科中也能有更好的表现。此外,通过数学学习,我逐渐发现了数学的美和魅力,对数学产生了浓厚的兴趣和热爱。这将成为我继续深入学习数学的动力和动力。
总之,高一数学必修一的学习使我认识到了数学的重要性和广泛应用性,学习方法的转变和数学思考能力的培养,以及数学与其他学科的联系。通过这门课程的学习,我不仅获得了更多的数学知识,还提高了自己的思维能力和解题能力。这种收获将对我未来的学习和发展产生积极的影响。
高一数学必修一心得体会篇八
教学准备
教学目标
1、理解平面向量的坐标的概念;
2、掌握平面向量的坐标运算;
3、会根据向量的坐标,判断向量是否共线.
教学重难点
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程
平面向量基本定理:
什么叫平面的一组基底?
平面的基底有多少组?
引入:
1.平面内建立了直角坐标系,点a可以用什么来
表示?
2.平面向量是否也有类似的表示呢?
高一数学必修一心得体会篇九
第一段:引言(大约200字)
数学是一门非常重要的学科,对每个学生来说都是必修科目。而高中阶段的数学课程则是为进一步培养学生的逻辑思维和数学思维能力打下基础。作为高一学生,我在学习数学必修一的过程中,对数学这门学科有了更深的了解,并且积累了一些心得体会。
第二段:重视基础知识(大约200字)
数学必修一是数学学科的基础课程,其中主要包括代数和几何两个部分。在学习的过程中,我发现掌握好基础知识非常重要。只有打扎实基础,才能够更好地理解和应用后续的知识。因此,在学习数学必修一的时候,我特别注重基础知识的理解与掌握。通过多做练习题,查漏补缺,加强对基础知识的记忆和理解,进而构建起更完整的数学认知体系。
第三段:培养解题思路(大约200字)
在学习数学的过程中,一个重要的目标是培养解题思路。数学的解题方法有很多,但核心是逻辑思维和推理能力。通过学习数学必修一的知识,我逐渐习得了一些解题技巧和思路。比如,在解代数题目时,我会学会先提取已知条件,然后根据问题要求确定未知量,最后利用已知条件和所学的代数运算法则进行推导。这样的系统思考过程不仅帮助我解决具体问题,也培养了我的逻辑思维和分析能力。
第四段:拓展应用能力(大约200字)
数学是一门应用性很强的学科,掌握好数学知识可以帮助我们更好地理解和解决实际问题。在学习数学必修一的过程中,我注意通过例题和习题的应用,将所学的知识与实际问题进行结合。比如,在学习几何部分时,我会通过具体的实例来理解几何的概念和定理,尝试将其应用到实际生活中的问题中,这样不仅增强了对知识的理解,也锻炼了自己的问题解决能力。
第五段:总结(大约300字)
通过学习数学必修一,我不仅掌握了基础的数学知识,更重要的是培养了我的逻辑思维和解题能力。数学的学习需要反复思考和反复实践,只有通过不断地思考和实践,才能够掌握好数学这门学科。在今后的学习中,我将更加注重对数学知识的应用和拓展,通过解题和实践,进一步提高自己的数学水平。同时,我也要坚持思考和探索,不仅仅满足于取得好成绩,更要培养自己的数学思维和解决问题的能力。
总之,通过学习高一数学必修一,我积累了宝贵的经验和体会,不仅对数学有了更深的理解,也培养了自己的逻辑思维和解题能力。我相信,通过持之以恒的努力和不断的实践,我一定能在数学学科中取得更大的进步。
高一数学必修一心得体会篇十
1.知识与技能
(1)掌握画三视图的基本技能
(2)丰富学生的空间想象力
2.过程与方法
主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
3.情感态度与价值观
(1)提高学生空间想象力
(2)体会三视图的作用
重点:画出简单组合体的三视图
难点:识别三视图所表示的空间几何体
1.学法:观察、动手实践、讨论、类比
2.教学用具:实物模型、三角板
(一)创设情景,揭开课题
“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。
(二)实践动手作图
2.教师引导学生用类比方法画出简单组合体的三视图
(1)画出球放在长方体上的三视图
(2)画出矿泉水瓶(实物放在桌面上)的三视图
学生画完后,可把自己的作品展示并与同学交流,总结自己的.作图心得。
作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。
3.三视图与几何体之间的相互转化。
(1)投影出示图片(课本p10,图1.2-3)
请同学们思考图中的三视图表示的几何体是什么?
(2)你能画出圆台的三视图吗?
(3)三视图对于认识空间几何体有何作用?你有何体会?
教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。
4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。
(三)巩固练习
课本p12 练习1、2 p18习题1.2 a组1
(四)归纳整理
请学生回顾发表如何作好空间几何体的三视图
(五)课外练习
1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。
2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。
1.2.2 空间几何体的直观图(1课时)
高一数学必修一心得体会篇十一
高一数学必修一的学习是我人生中的转折点,我从中深深地感受到了数学的美妙和重要性。以前我对数学并不感兴趣,觉得它只是一门冷冰冰的学科。但是通过高一数学必修一的学习,我开始发现数学有着自己的魅力。数学中的各种公式和方法让我感受到了从未有过的智慧和力量,它可以帮助人们理解世界、解决问题,是一门非常实用和有用的学科。
第二段:掌握数学的基础知识是关键
在学习高一数学必修一的过程中,我深刻认识到掌握数学的基础知识是关键。数学是一门建立在基础上的学科,如果没有牢固的基础知识,将很难理解深层次的概念和方法。在学习中,我发现课本中的例题和习题对于掌握基础知识非常重要。通过对例题的学习和思考,我能够掌握基本的解题方法和技巧,进而应用到习题中。同时,多做一些习题,可以巩固对基础知识的掌握,培养解题的思维能力和逻辑思维能力。
第三段:培养解题思维的重要性
高一数学必修一的学习中,我深刻认识到培养解题思维的重要性。数学不仅仅是记忆和运算,更是一种思维方式。在解题中,需要我们灵活运用所学的知识,找到问题解决的方法和路径。通过解题,我们可以培养逻辑思维能力和创造思维能力,学会分析和归纳问题。在解题中,我常常遇到一些难题,但是通过不断地思考和尝试,最终能够找到解题的方法,这种成就感让我更加喜爱数学。
第四段:数学的应有意识
高一数学必修一的学习让我意识到数学的应有意识。数学并不是一门只存在于课堂的学科,它贯穿了生活的方方面面。在日常生活中,我们常常会遇到一些和数学相关的问题,例如购物打折、公共交通时间的计算等。通过数学学习,我们能够将数学运用到生活中,提高解决问题的能力。数学的应用思维也在一定程度上锻炼了我们的数学技能,加深了对数学的理解和体验。
第五段:合作学习的力量
高一数学必修一的学习让我深刻认识到合作学习的力量。数学是一门需要讨论和交流的学科,通过和同学们一起学习讨论,我们可以互相启发、互相促进。在解题时,同学们常常会提出不同的思路和观点,这样可以让我们从不同的角度去思考问题,找到更多的解题方法和思路。同时,在合作学习中我们还能学会倾听他人的意见,提高自己的表达和沟通能力。
总结:高一数学必修一的学习让我深刻认识到数学的美妙和重要性,掌握数学基础知识是关键,培养解题思维是重要的学习目标,数学应用意识和合作学习都十分重要。我相信,通过不断的学习和实践,我将能够在数学学习中取得更大的进步。

一键复制