无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
三角形面积教学反思不足三角形面积教学反思篇一
在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的知识结构中去。
具体做法如下:
1、 这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,也就没有了学生的创新和实践。因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。
3、实现合作互动:这节课一系列活动的设计给了学生充足的用眼看、用耳听、用嘴说、用脑想的时间和空间,让学生尽情地表现、发展自己,充分体现了教师指导者、合作者的作用。我提供了多次学生交流的机会,学生们可通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
不足之处:
例如:在第二次操作活动中,参与面不够广,部分学生手中拿着两个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
三角形面积教学反思不足三角形面积教学反思篇二
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程理念的要求,教学重点应该是引导学生学会学习。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
在教学中,我让学生动手操作,分别用三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,小组交流操作中的发现,让学生体验和感知三角形面积公式的推导过程。在操作和交流的过程中,学生表现了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。
在这节课中,探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的“除以2”是怎么来的?学生经过比较、探讨发现,得出三角形的面积是拼成的平行四边形面积的一半。使学生在讨论中发现问题,解决问题。培养了学生的合作精神。
新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。使学生尝到应用知识的快乐,学生学得认真,愉快。
我感觉:在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:s=ah÷2。学生对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。这样提供材料思维含量低,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。这样的操作是肤浅的,没有起到促进学生建构知识的作用。
基于以上思考,我想下一年再教学这一内容时,我想引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
三角形面积教学反思不足三角形面积教学反思篇三
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生在学习平行四边形面积计算时已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,在教学中我注重学生自己动手操作,小组合作探索,给每个学生提供思考、表现和发言的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
通过让学生求阴影部分三角形的面积来猜测三角形的面积该怎么求,在学生“你争我吵”中激发学生的对这节课的兴趣。
在教学中我让学生动手操作,课前我让学生剪下三组完全一样的三角形,然后在小组中拼一拼说说自己的想法,并比较每个三角形与由它拼成的平行四边形的面积关系,以及各部分的关系,在动手活动中学生表现出了很高的热情,学生的主体性得到了充分的发挥,学生对学习也产生了浓厚的兴趣,个个投入操作,体验成功的喜悦。
当然在整个活动的过程中,我也发现了自己的不足,首先是课堂纪律的把握,其次是我发现个别学生动手能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作的目的,学后只做了一次“机械的操作工”,而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的。
让学生运用三角形的面积公式去解决实际问题,去求一块三角形交通标志的面积,这样学生就会感觉到学有所用,可以激发学生学习数学的兴趣。
由于教学经验不足存在着在课上不能顾及到每个学生,在学生的评价上还不够到位,总结性的语言还不够精炼等等缺点,不过我在以后的教学中会慢慢改进的。
三角形面积教学反思不足三角形面积教学反思篇四
这节课,是在学生学习了平行四边形面积计算,初步了解了转化与平移的数学思想的基础上进行学习的。教学中,我重视让学生动手操作,鼓励、引导学生以小组合作的形式,通过操作、讨论、交流等方式,探索三角形面积的计算方法,得出计算公式,学生在师生、生生及小组间的互动中解决了问题,获得了知识,体验了成功。课堂教学取得了良好的效果。
《三角形面积的计算》,对于十岁左右的儿童来说,空间观念是从经验活动的过程中逐步建立起来的。鉴于此,这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、剪、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
创设情景,通过由长方形花坛面积过渡到三角形花坛的面积,让学生猜想三角形花坛的面积如何计算,唤起了学生的求知欲,引发学生的学习兴趣,这不仅符合学生的认知需要,发展了个性,而且让学生怀着好奇心进入自主的对新知识的探索活动中去。
这节课一系列活动的设计给了学生对新知探讨充足的合作交流的时间和空间,让学生通过实际操作和小组讨论尽情地表现、发展自己,充分体现了教师是课堂教学的指导者、合作者的作用。我提供了多次学生交流的机会:把学具三角形转化成学过的平面图形、讨论转化成的图形与原三角形的关系等。学生通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
一位教育家说过:“儿童的智慧就在他的手指尖上。” 因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,因此本节课在教学思路上重视对学生的学法指导,淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼剪的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了剪剪拼拼、操作讨论的方法,找到了三角形如何转换成长方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。
本课在进入新授时没有按照传统的方法灌输给学生三角形的面积公式,而是学生在实践操作后,自主得出结论,由学习中的问题,产生了思维火花的碰撞,通过不同的剪拼方法,殊途同归都能达到推导出三角形面积计算公式的目的,深化了数学知识的理解,这里较好地渗透了归纳、概括等数学思想。学生从自己的“数学现实”出发,在教师的启发诱导下自己动手、动脑“做数学”,用操作、观察等,获得体验,并作类比、分析、归纳,逐步达到数学化、严格化和形式化。
已知三角形的面积是36平方厘米,底是8厘米,它的高是多少厘米? 在作业时学生答案五花八门:36÷2÷8、36-8÷2、16×2÷8 ,甚至有学生对此题束手无策。这可能与未处理好教学目标与学生探究能力之间的关系有关,部分学生对三角形与转化后平行四边形之间的联系浮于表面,还没有更深入的理解。要解决好这样的问题,在今后的课堂教学中还有待于我不断地思考和探索。
三角形面积教学反思不足三角形面积教学反思篇五
首先学生通过对多边形图片的欣赏,说一说能否计算少先队大队旗的面积和计算红领巾的面积,提出求三角形的面积问题,其次让学生比较任意两个三角形的大小。激发学生强烈的求知欲望和好奇心,使学生的注意、记忆、思维、集中在一起,进入一种智力的最佳状态。
(一)数方格
1、用数方格的方法求出三个三角形的面积。(小组内分工合作)要求学生用数方格的方法求出三角形的面积接着引导学生观察,这三角形的高和底的长度同它的面积之间有什么联系,启发学生猜想。
(二)拼图形
1、用两个完全一样的锐角三角形拼
(1)教师参与学生拼摆,个别加以指导
(2)电脑演示拼摆过程
2、把一个三角形分割、拼成一个长方形
(1)学生拼摆
(2)电脑演示拼摆的过程
3、用两个完全一样的直角三角形
(1)组织学生利用手里的学具试拼
(2)电脑演示拼摆的过程
提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
4、用两个完全一样的钝角三角形来拼
(1)由学生独立完成
(2)电脑演示拼摆的过程来帮助学生理解旋转、平移的过程
(三)归纳三角形面积
学生观察讨论相互交流,弄清面积关系以及底高之间的关系。
2、推导公式
(1) 平行四边形与长方形和正方形的关系?
(2) 引导归纳三角形面积计算公式:
三角形面积=平行四边形面积÷2 =底×高÷2
通过学生动手拼图,体现了以学生为主,提供给他们发展的时间和空间,引导学生选择适合自己的方法考察和再创造数学知识。同时,通过信息技术手段,能很好表现出图形的拼摆过程。学生不仅掌握了新知,更掌握探究问题的方法,培养创新能力。
1、自学例题
(2)学生独立解答。
例题教学采用分析,并练习校对形式,训练学生的口语表达能力,及应用已学知识解决实际问题的能力。做题快的学生可以点击典型例题从中可获得更多的知识。
2、出示尝试题
其次,通过所学的知识计算红领巾的面积,然后编出尝试题。
新课程标准强调数学应淡化其抽象性,而深化其应用的广泛性,于是前后呼应,通过测算红领巾的面积,让学生在生活中学,在生活中用。
1、竞赛题。
计算少先队中队旗的面积(只要列式)。看谁想得最快,解法最简便。通过讨论区让学生充分利用媒体交互功能快速找出解题的多种方法,并评出以第三种解法构思巧妙,把下面一个三角形移到上面,两个三角形拼成一个长方形。
2 、为了更好的培养学生的发散思维和创新能力,教学时,我给学生准备了各式各样的学具,让学生自主选择,用多种方法进行试验,对教材进行很好的补充和拓宽。
3、学生通过提供的拓展资料或资源网站了解更多的知识。
我校20xx年要在学校校园中种一块近似三角形绿化带,面积是15平方米,请你当个小设计家,可以有几种设计方案?这样开放了学生的思维,培养了学生的创新意识和创新能力。
最后,让学生利用本节课这种学习方法,学习本单元的其它两个教学内容。
三角形面积教学反思不足三角形面积教学反思篇六
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形面积教学反思不足三角形面积教学反思篇七
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形面积教学反思不足三角形面积教学反思篇八
个有生命的课堂,应该是思维灵动的课堂,既要通过精心的预设,激发思维的灵动,更应巧用生成的教学资源,应情境而变,敏锐捕捉不期而至的生成点,才能演绎不曾预约的精彩应情境而变,提升课堂思维的灵动。
记得我在上《三角形的面积计算》一课时,引导学生通过探究得出三角形面积公式后,出示这样一道判断题:等底等高的三角形面积相等。()
在预设中,我认为这样的判断在前面的探究基础上让学生判断应该是没有什么问题的,可是当我让学生用手势判断时,竟然有三分之一的学生判断是错误的。于是我有意引导持不同意见的学生来一场辩论。
我首先请一名判断错误的学生起来说理由。
生1:等底等高的三角形,就有可能存在形状不同的情况,那就有可能面积不同。
这时持反方意见的一个学生站起来:老师让我来问问他。
生1:要知道三角形相对应的底和高。
生2:怎么求三角形的面积?
生1:用底乘高除以2呀!
这时很多判断错误的学生开始反思了。
生2:那底和高相等,用公式来计算面积会不相等吗?
生1也在反思,但仍坚持:但它们的形状……
生3:老师,我来画图给他看。
于是,学生上讲台先用直尺在黑板上画了一组平行线,并在两条平行线之间画了几个等底等高的三角形。
生1:哦,我懂了。
这个本来在教学预设中学生应该在可以轻松解决的问题,打乱了我按部就班的教学,但学生的学习积极性和主动性被充分调动起来,迸发出智慧的火花。
我们在日常教学中,要尊重学生不同的思维层次,灵活的利用教学资源进行重组,沿着学生思维的轨迹,多角度地去引导学生,与学生一起生成。在预设中体现教师的匠心,在生成中展现师生智慧互动的火花!让课堂充满生成的美丽。
三角形面积教学反思不足三角形面积教学反思篇九
针对以上问题,本次教学中我进行了一定的改进,力求充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
创设情景,让学生计算做红领巾所需的布料,为难之际,唤起了学生的求知欲,引发学生的学习兴趣,这不仅符合学生的认知需要,发展了个性,而且让学生怀着由好奇所引起的理智上的震动进入认知活动方面的探索。
猜测是数学理论的“胚胎”,猜测是学生感知事物作初步的未经证实的判断,它是学生获取知识过程中的重要环节。三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,在教学中鼓励学生大胆猜测:你认为三角形的面积大小与什么有关?它可能转化为什么图形来推导三角形的面积计算公式?这时学生就会跃跃欲试,从而激发了学习的兴趣。学生一旦做出某种猜测,他就会把自己的思维与所学的知识连在一起,就会急切地想知道自己的猜想是否正确,于是就会主动参与,关心知识的进展,从而达到事倍功半的教学效果。
在经历用“两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式”后,我又抛出一个挑战性的问题:你能否就用一个三角形转化成已经学过的图形,从而推导出三角形的面积计算公式呢?这时,课堂出现了少有的安静,教室里只听见折纸、剪纸的沙沙声,同学们都在专心致志地研究。我下去一看,大部分学生都象推导平行四边形面积公式一样,沿高把一边剪下来,再移到另一边去,可无论如何也拼不成已学过的图形;还有的,把三角形在手里翻来覆去,苦思不得其解。
/
长×宽×2
↓ ↓
底÷2×(高÷2)×2
=底×高×2
由于时间关系,我没能让学生作进一步的探究,只能把这一任务留给学生课后再研究,我期待学生获得更多的“精彩”。

一键复制