当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,并把这些用文字表述出来,就叫做总结。那关于总结格式是怎样的呢?而个人总结又该怎么写呢?以下我给大家整理了一些优质的总结范文,希望对大家能够有所帮助。
高三数学知识点全总结高三数学知识篇一
第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三:数列。
数列这个板块,重点考两个方面:—个通项;─个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;—个是计算。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
高三数学知识点全总结高三数学知识篇二
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
2.数列的分类
3.数列的通项公式
再强调对于数列通项公式的理解注意以下几点:
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
高三数学知识点全总结高三数学知识篇三
一、基本知识
(一)、数与代数 a、数与式:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。乘法:
①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以这个数的倒数。②0不能作除数。
乘方:求n个相同因数a的积的运算叫做乘方,an乘方的结果叫幂,a叫底数,n叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数:无限不循环小数叫无理数平方根:
①实数分有理数和无理数。
意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式:
代数式:单独一个数或者一个字母也是代数式。合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;
对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不能为0。
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。b、方程与不等式
1、方程与方程组 一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,将未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法、加减消元法。
二次函数(如抛物线yax2bxc),一元二次方程的解可在二次函数图象中表示,一元二次方程也是二次函数的一个特殊情况,就是当y为0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点就是该方程的解。
(1)配方法:利用配方,使方程变为完全平方公式,再开平方法去求解。
iii当△0时,一元二次方程没有实数根;
2、不等式与不等式组 不等式:
①用符号“”,或“”,号连接的式子叫不等式。
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
3、函数:
变量:因变量,自变量。
①若两个变量x、y间的关系式可以表示成:ykxb(b为常数,k不等于0)的形式,则称y是x的一次函数。
②当b=0时,即:ykx(k0)称y是x的正比例函数。
一次函数的图象:
①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数ykx(k0)的图象是经过原点的一条直线。
当k0,b0时,则经1、3、4象限;当k0,b0时,则经1、2、3象限。
1、点,线,面:
①图形是由点,线,面构成的。
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角 线:
①线段有两个端点。
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第三条直线平行,那么这两条直线互相平行。垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根射线和直线可以无限延长有关,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了两点后,一定要把线段穿出两点。角平分线:把一个角平分的射线叫该角的角平分线。
性质:正方形具有平行四边形、菱形、矩形的一切性质 判定:
1、对角线相等的菱形
2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理: 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理: 三角形两边的和大于第三边
16、推论: 三角形两边的差小于第三边
17、三角形内角和定理: 三角形三个内角的和等于180°
18、推论1: 直角三角形的两个锐角互余
21、全等三角形的对应边、对应角相等
25、边边边公理(sss):有三边对应相等的两个三角形全等
27、定理1:在角的平分线上的点到这个角的两边的距离相等
28、定理2:到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)
31、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1:三个角都相等的三角形是等边三角形
36、推论2:有一个角等于60°的等腰三角形是等边三角形
38、直角三角形斜边上的中线等于斜边的一半
39、定理:线段垂直平分线上的点和这条线段两个端点的距离相等
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1:关于某条直线对称的两个图形是全等形
48、定理:四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理:n边形的内角的和等于(n-2)×180°
51、推论:任意多边的外角和等于360°
52、平行四边形性质定理1:平行四边形的对角相等
53、平行四边形性质定理2:平行四边形的对边相等
54、推论:夹在两条平行线间的平行线段相等
55、平行四边形性质定理3:平行四边形的对角线互相平分
56、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3:对角线互相平分的四边形是平行四边形
67、菱形判定定理1:四边都相等的四边形是菱形
68、菱形判定定理2:对角线互相垂直的平行四边形是菱形
69、正方形性质定理1:正方形的四个角都是直角,四条边都相等
71、定理1:关于中心对称的两个图形是全等的
79、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰
sacd12
(ab)hlhcd83、(1)比例的基本性质:如果:b,那么adbc;如果:adbc,那么:abbcdab。
abcd
91、相似三角形判定定理1 :两角对应相等,两三角形相似(asa)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理2:两边对应成比例且夹角相等,两三角形相似(sas)94、判定定理3:三边对应成比例,两三角形相似(sss)
98、性质定理3:相似三角形面积的比等于相似比的平方
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理:不在同一直线上的三点确定一个圆。
116、定理:一条弧所对的圆周角等于它所对的圆心角的一半
127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
139、正n边形的每个内角都等于:12n2n180o
140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141、正n边形的面积:snpnrn 其中:pn为正n边形的周长,rn为弦心距。
142、边长为a的正三角形面积:s
143、弧长计算公式: ln18034a2
三、常用数学公式
公式分类 公式表达式
22乘法与因式分解 ab(ab)(ab)
b4ac2a
123456nn(n1)2;2
四、基本方法
1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式n次幂的形式。通过配方解决数学问题的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法,是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程:ax2bxc0(a、b、c属于实数,且a≠0)根的2判别,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),b4ac,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
一、至少有两个。
归谬,是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法:平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添臵辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添臵补助线,即使需要添臵辅助线,也很容易考虑到。
9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法
选择题:是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题:是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:也叫数形结合法,借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
张健 2012-5-22 总结
高三数学知识点全总结高三数学知识篇四
2圆的内部可以看作是圆心的距离小于半径的点的集合
3圆的外部可以看作是圆心的距离大于半径的点的集合
4同圆或等圆的半径相等
5到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
6和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
7到已知角的两边距离相等的点的轨迹,是这个角的平分线
9定理 不在同一直线上的三点确定一个圆。
10垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
12推论2 圆的两条平行弦所夹的弧相等
13圆是以圆心为对称中心的中心对称图形
15推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
16定理 一条弧所对的圆周角等于它所对的圆心角的一半
高三数学知识点全总结高三数学知识篇五
2、斜二测画法应注意的地方:
3、表(侧)面积与体积公式:
⑶台体①表面积:s=s侧+s上底s下底②侧面积:s侧=
⑷球体:①表面积:s=;②体积:v=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
5、求角:(步骤-------ⅰ.找或作角;ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
高三数学知识点全总结高三数学知识篇六
1、圆的定义
在一个个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆,固定的端点o叫做圆心,线段oa叫做半径。
2、直线圆的与置位关系
1.线直与圆有唯公一共时,点做直叫与圆线切
2.三角的外形圆接的圆叫做三心形角外心
3.弦切角于所等夹弧所对的的圆心角
4.三角的内形圆切的圆叫做三心形角内心
5.垂于直径半直线必为圆的的切线
6.过径半外的点并且垂直端于半的径直线是圆切线
7.垂于直径半直线是圆的的切线
8.圆切线垂的直过切于点半径
3、圆的几何表示
以点o为圆心的圆记作“⊙o”,读作“圆o”
二、垂径定理及其推论
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的'两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:
过圆心
垂直于弦
直径 平分弦 知二推三
平分弦所对的优弧
平分弦所对的劣弧
三、弦、弧等与圆有关的定义
1、弦
连接圆上任意两点的线段叫做弦。(如图中的ab)
2、直径
经过圆心的弦叫做直径。(如途中的cd)
直径等于半径的2倍。
3、半圆
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4、弧、优弧、劣弧
圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以a,b为端点的弧记作“ ”,读作“圆弧ab”或“弧ab”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)
高三数学知识点全总结高三数学知识篇七
其实在高三这一年,只要孩子不放弃,继续努力,逆袭的几率还是很大的,特别是数学基础不好的同学。下面是小编为大家整理的关于高考数学必考知识点最全总结,欢迎大家来阅读。
一、自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1、y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1、作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2、性质:(1)在一次函数上的任意一点p(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3、k,b与函数图像所在象限:
当k0时,直线必通过一、三象限,y随x的增大而增大;
当k0时,直线必通过二、四象限,y随x的增大而减小。
当b0时,直线必通过一、二象限;
当b=0时,直线通过原点;
当b0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
1、向量的基本概念
(1)向量
既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
(2)平行向量
方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。
若向量a、b平行,记作a∥b。
规定:0与任一向量平行。
(3)相等向量
长度相等且方向相同的向量叫做相等向量。
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可。
②向量a,b相等记作a=b。
③零向量都相等。
④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关。
2、对于向量概念需注意
(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。
(2)向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。
(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。
3、向量的运算律
(1)交换律:α+β=β+α
(2)结合律:(α+β)+γ=α+(β+γ)
(3)数量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
2、复合函数的.有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
4、函数的周期性
5、方程k=f(x)有解k∈d(d为f(x)的值域);
7、(1)(a0,a≠1,b0,n∈r+);
(3)l og a b的符号由口诀“同正异负”记忆;
8、判断对应是否为映射时,抓住两点:
(1)a中元素必须都有象且唯一;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为a,值域为b,则有f[f——1(x)]=x(x∈b),f——1[f(x)]=x(x∈a)。
13、恒成立问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
高三数学知识点全总结高三数学知识篇八
知识网络:
概念、定义:
1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则
减去一个数,等于加上这个数的相反数。
14、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则
除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。在an 中,a叫做底数(basenumber),n叫做指数(exponeht)
22、根据有理数的乘法法则可以得出
负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
24、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字(significant digit)
高三数学知识点全总结高三数学知识篇九
一、分式的定义:
一般地,如果a,b表示两个整数,并且b中含有字母,那么式子
二、与分式有关的条件
①分式有意义:分母不为0(b0)
②分式无意义:分母为0(b0)③分式值为0:分子为0且分母不为0(a叫做分式,a为分子,b为分母。ba0)
b0a0a0
或)b0b0a0a0
或)
b0b0④分式值为正或大于0:分子分母同号(⑤分式值为负或小于0:分子分母异号(⑥分式值为1:分子分母值相等(a=b)
⑦分式值为-1:分子分母值互为相反数(a+b=0)
三、分式的基本性质
(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:aacaac,,其中a、b、c是整式,c0。bbcbbc(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:aaaa bbbb注意:在应用分式的基本性质时,要注意c0这个限制条件和隐含条件b0。
四、分式的约分
1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
(依据:分式的基本性质!)
3.“两大类三类型”
二、三”型,“二,四”型,“
四、六”型 1)“
4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。
六、分式的四则运算与分式的乘方 ① 分式的乘除法法则:
bb③ 分式的加减法则:
1)同分母分式加减法:分母不变,把分子相加减。式子表示为:
nabab cccacadbc bdbd2)异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为:3)两种类型:一是分式间的加减;二是整式与分式的加减(整式的分母为1)
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
amanamn
amnnnamn
abanbn
amanamn
(a0)
1anan0n
ana0)
a1(a0)(任何不等于零的数的零次幂都等于1)
abb其中m,n均为整数。
八、分式方程
(2)去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)(3)解整式方程,得到整式方程的解。
第2页/共3页
(4)检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
注意:产生增根的条件是①是得到的整式方程的解;②代入最简公分母后值为0。
九、列分式方程——基本步骤:审,设,列,解,答(跟一元一次不等式组的应用题解法一样)① 审—仔细审题,找出等量关系。② 设—合理设未知数。③ 列—根据等量关系列出方程(组)。④ 解—解出方程(组)。注意检验 ⑤ 答—答题。
第3页/共3页
高三数学知识点全总结高三数学知识篇十
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差a-b可以表示成a与b的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式

一键复制