范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆锥的体积说课稿一等奖篇一
1、本课教学内容是义务教育课程标准实验教材小学数学六年级下册的第一单元《圆柱与圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导,例2、例3,相应的“做一做”及练习四的习题。
2、本课是在学生已经掌握了圆柱体积计算和认识了圆锥的基本特征的基础上学习的,是小学阶段几何知识的最后一课。学好这一部分内容,有利于进一步发展学生的空间观念,进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重点:能正确运用圆锥体积计算公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
情感与价值观:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教具准备:等底等高的圆柱、圆锥一对,与圆柱等底不等高的圆锥一个,与圆柱等高不等底的圆锥一个。
学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,一定量的细沙。
1、实验操作法。
波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”因此,我在课上设计了一个实验,通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力。
2、比较法、讨论法、发现法三法优化组合。
几何知识具有逻辑性、严密性、系统性的特点。因此在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一”。然后再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生用不等底等高的空圆锥、空圆柱盛沙做实验,发现有时装不下,有时不够装,有时刚好装满,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
我在研究教法的同时,更重视对学生学法的指导。
1、实验操作法。
2、尝试练习法。
本节课我设计了以下五个教学程序:
1、复习旧知,做好铺垫。
复习圆锥的认识和圆柱的体积公式及其应用,为新知迁移做好铺垫。
2、谈话激趣,导入新课。
(1)我们掌握了圆柱体积公式及其应用,并认识了圆锥,这节课,我们一起来学习圆锥的体积。(板书课题)
(2)圆锥体积和圆柱体积有什么关系吗?
3、实验操作,探究新知。
本环节教学是本节几何课成败的关键。为了使学生成为学习的主人,在这个环节中,我尽量给学生有对象可说,有东西可做,有问题可想,有步骤可循,让学生都能主动地操作、观察、比较、分析和归纳。
(1)在实验时,我提出了四个问题,让学生带着问题进行操作:
a比一比,量一量,圆柱和圆锥的底和高之间有什么关系?
b用空圆锥装满沙,倒进空圆柱中,可以倒几次?每次结果怎样?
c通过实验你发现了什么?
d你能用实验说明“圆锥的体积不一定是圆柱体积的三分之一”吗?
(2)学生汇报实验结果。说出圆锥体及计算公式。
(3)教师归纳公式,学生记忆公式。(板书结论和公式)
4、尝试练习,巩固提高。
(1)同时出示例2和例3。
①课件示例题,指名读题,说出已知条件和所求问题;
②分析题意。
③指名板演。
③集体订正,指出计算圆锥体积时,一定不要忘了乘“1/3”。
(2)巩固练习,形成技能,完成“做一做”。
这个环节充分放手让学生自己尝试练习,可以挖掘学生的潜能,让学生体验成功的乐趣。
5、看书质疑,布置作业。
通过这节课的学习,你学到了什么知识?还有什么疑问的吗?看书总结和质疑,是一堂课的重要环节。每一节成功的课,都应该留有足够的时间让学生去质疑答难,从而实现课内向课外的延伸。在完成了书上的基础练习之后,设计了三个发展练习,分别是知道半径和高;直径和高;周长和高;求体积,这样即满足了基础知识的学习,又使优生能有所提高。
以上是我对《圆锥的体积》一课的说课,如有不妥望各位老师给予帮助指导。
圆锥的体积说课稿一等奖篇二
听了柏老师教学《圆锥的体积》一课,收获很多,柏老师课前做了充分的准备,做到能自然、流畅地完成教学任务。下面我就本节课的两点成功之处,谈谈自己的看法。
一、为新知识的学习搭建合理平台。主要体现在柏老师能够运用原有知识来推动新知识的学习,让学生大胆借鉴前面学习圆柱体积公式的方法来探究圆锥体积公式。利用迁移规律,让学生从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法,使新旧知识得到整合。这种借鉴的学习方法,不仅使本节课的教学变得轻松,同时有利于学生更深刻地理解和掌握这种学习策略,有利于学生的进一步学习和终身的发展。
二、注重培养学生的实践能力。这节课的重点是通过实验来探究圆锥体积公式的由来,柏老师引导学生做了三个实验。一是比较圆柱和圆锥是等底等高;二是做用装满小米的圆柱在空圆锥中倒的实验;三是特别设计了一组不等底或不等高的圆柱和圆锥来做倒米实验,强调只有等底等高的圆柱和圆锥存在着的倍数关系。在实验前,让学生了解实验要求,并且提出实验目的,以实验目的为主线,让学生小组合作,通过动手操作,有眼睛观察,动脑筋思考,多种感官一起参与活动,由直观到抽象,层层深入,探索出圆锥体积公式的由来,从而理解和掌握了圆锥体积的计算公式,培养了学生的观察能力、操作能力和初步的空间观念,克服了几何形体公式计算教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。这样的学习,学生学得活,记得牢,既发挥教师的主导作用,又体现了学生的主体地位。学生在学习过程中,是一个探索者、研究者、合作者、发现者,并且获得了富有成效的学习体验。
不过这节课也存在一些不足,教学环节的衔接和时间的分配有些不恰当,教学方法没有多样化,欠缺改革创新。
圆锥的体积说课稿一等奖篇三
1、通过动手操作实验,推导出圆锥体体积的计算公式。
2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。
3、通过学生动脑、动手,培养学生的观察、分析的综合能力。
教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。
教学过程设计:
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高 6 厘米,体积 = ?
(2)底面半径是 2 分米,高10分米,体积 = ?
(3)底面直径是 6 分米,高10分米,体积 = ?
3、认识圆锥(课件演示),并说出有什么特征?
教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)
学生回答,教师板书:
圆柱------(转化)------长方体
圆柱体积计算公式--------(推导)长方体体积计算公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。
(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)
(学生得出:底面积相等,高也相等。)
教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验,并借助课件演示。
(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)
a、谁来汇报一下,你们组是怎样做实验的?
b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的.体积是圆锥体体积的3倍)
教师:同学们得出这个结论非常重要,其他组也是这样的吗?
学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。
(板书圆锥体体积计算公式)
教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的 。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
(教师给体积公式与“等底等高”四个字上连线。)
进一步完善体积计算公式:
圆锥的体积=等底等高的圆柱体体积×1/3
=底面积 × 高×1/3
v = 1/3sh
教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
课件出示:
想一想,讨论一下:?
(1)通过刚才的实验,你发现了什么?
学生后讨论回答。
1、口答。
(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?
2、出示例题,学生读题,理解题意,自己解决问题。
a、 学生完成后,进行小组交流。
b 、 你是怎样想的和怎样解决问题的。(提问学生多人)
c 、 教师板书:
1/3×19×12=76(立方厘米)
答:它的体积是76立方厘米
3 、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
5、比较:例1和例2有什么不同的地方?
(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1 是直接求体积,例2是求出体积后再求重量。

一键复制