在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
八年级数学图形的平移dontletusdown篇一
1、教学目标定位
(1).知识技能目标
让学生掌握多边形的内角和的公式并熟练应用。
(2).过程和方法目标
让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。
(3).情感目标
激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。
2、教学重、难点定位
教学重点是多边形的内角和的得出和应用。
教学难点是探索和归纳多边形内角和的过程。
1、教材的地位与作用
本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。
2、联系及应用
本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此
多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。
学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。
1、教学方法的设计
我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
2、活动的开展
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
3、现代教育技术的应用
我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。
以上是我对《多边形的内角和》的教学设计说明。
八年级数学图形的平移dontletusdown篇二
探索多边形内角和
知识目标
1、探索多边形内角和定义、公式
2、正多边形定义
能力目标
1、发展学生的合情推理意识、主动探索的习惯
2、发展学生的说理能力和简单的推理意识及能力
德育目标
培养用多边形美花生活的意识
学难点
多边形内角和公式的简单运用
探索、讨论、启发、讲授
利用学生剪纸、投影仪进行教学
1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。
2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。
2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)
(1)量出每个内角度数然后相加为540°;
(5)六边形可怎样剪成三角形求内角和?n边形呢?
(6)总结规律:多边形内角和为(n—2)x180°(n≥3)。
3、议一议:
(1)过四边形一个顶点的对角线把四边形分成两个三角形;
(2)过五边形一个顶点的对角线把五边形分成( )个三角形;
(3)过六边形一个顶点的对角线把六边形分成( )个三角形。
(4)过n边形一个顶点的对角线把n边形分成( )个三角形;
三、正多边形定义:
1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)
2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。
3、填表:
正多边形的边数
3
4
5
6
8
…
n
正多边形的内角和
180°
360°
540°
720°
1080°
…
正多边形每个内角的度数
60°
90°
108°
120°
135°
…
主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。
课本p110、习题4、10第1、2、3题。
附:选用随堂练习:
1、一个多边形的每个内角都是140,它是()边形?
2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。
3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。
4、一个多边形的每个内角都是140°,这个多边形是()边形。
5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。
6、下列角能成为一个多边形的内角和的是()
a、270°b、560°c、1800°d、1900°
如图(2),求∠a+∠b+∠c+∠d+∠e+∠f+∠g等于多少
八年级数学图形的平移dontletusdown篇三
这一节课的教学重点是等腰三角形的判定定理及其应用,难点根据题目所给条件进行适当的说理,教学方法主要是讨论、探索、启发式,运用辅助工具是多媒体课件。
开始上课时先让学生观察生活中一组都含有等腰三角形的图片,让学生体会数学来源于生活,生活中存在数学美,接着引导学生说出这组图片的特点,从而引出本节课要探究的主要内容即本节课的课题《等腰三角形的判定》。
在教学过程中,先让学生动手做以下的实验:
在白纸上画一条线段bc,以bc为一边分别以b、c为顶点,画两个相等的角(用量角器),这两角的另一边交于点a,让学生比较ac与ab的长度?设疑问:通过以上实践你得出什么结论?让学生思考、猜想、总结归纳出结论,让学生体验知识产生的过程,激发学生探求知识的欲望,接着为让学生证明实验的结论,用多媒体来演示三角形的翻折过程,并引导学生总结实验的结论。进一步提问学生:本结论的前提条件是什么?已知什么?结论是什么?如何用数学语言把这个结论的意思表达出来?让学生思考两分钟后,挑选一个学生回答,在学生回答过程中引导并在黑板上板书出来,目的是让学生很好地理解这个结论的意思。然后引出:我们通过实践得出这个结论作用是用它来识别等腰三角形,也就是我们这节课的重点内容:等腰三角形的判定,与前面提到的课题前后呼应,接着引入如何利用判定定理解答一些问题,在讲例题与练习的过程中,题目由浅到深,题型由口答到动手写,在这过程,让学生能够充分的掌握与运用,老师只是从旁引导,并给予一定的帮助与纠正。
1、如果在板书用数学语言表达实验结论:在一个△abc中,如果∠b=∠c,那么ab=ac的之前在黑板上画出一个三角形引导学生指出∠b所对的边是哪一条边,∠c所对的边是哪一条边后,再把用数学语言表达结论板书出来的效果比直接板书的效果好。
2、在教学过程中,忽略等腰三角形的性质定理与判定定理的区别。
3、在教学过程中有时语速过快,语言不是很简练。
八年级数学图形的平移dontletusdown篇四
1.通过实例,掌握图形平移的方法,能在方格纸上将简单图形平移。
2.培养学生的操作能力和分析能力,发展学生的空间观念。
3.通过图形平移激发学生学习数学的兴趣,培养学生的成功体验。今天听了李老师的课,给我很深的感触,整节课设计合理,多种形式探究平移的特点,达到了预期的教学目标。
听了李老师的这节课,能看出李老师对本节课的的精心准备和精心设计。在本节课中,李老师发挥了教师的主导作用,真正做到了学生学习的组织者、引导者和参与者的身份,并结合学生自身经验,让学生在操作中感知平移,从中把握发现平移的特点,学生在轻松的教学氛围中,有效地构建图形平移距离的方法,加深对概念的理解和运用,使感悟与认知共生。本节课有以下三个亮点。
李老师从汽车在公路上行驶的情境引入,引导学生观察汽车是如何运动的,同时让学生举例日常生活中经常见到的平移现象:升降电梯、推拉窗等,使学生有更多的机会从周围熟悉的.事物中自主地学习和理解平移现象,这也充分地实现了“数学生活化”“数学就在我身边”“数学来源于生活,服务于生活”的教学思想。体会到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感,激发解决问题的欲望,同时培养学生用数学的眼光观察生活,丰富了学生对数学和情感,为下一步的探究创设合适的情境。
学习知识的最佳途径是由学生自己去发现、感悟。在教学中李老师充分考虑学生的认知发展水平和已有的知识经验,根据是图形在方格图中向哪里平移几格是本节课的难点,李老师给学生提供自主探究、合作交流和自我表现的机会,让学生最大限度地投入到观察、思考、操作的活动中去。学生通过动口、动脑、动手,兴趣特别高昂,能积极地参与教学活动中。
在教学中本课将黑板、学具、电脑等多种媒体有机结合,巧妙地应用于教学全过程。操作作为一个主旋律萦绕于本节课的教学之中。
总之,本节课,李老师重视学生的感悟认知,提供大量感性材料,让学生在操作中体会,使学生经历自主观察——探究——归纳——应用的整个过程。
1、课件情景设计效果没有达到,如果能再在交流平移的方法时——抓住一条边、几个点,进行平移,也就是在原图形和平移后的图形利用计算机在重点处闪现,给学生一个直观的感受,这比用语言描述要直观得多、简捷得多,效果也会更突出;这样充分使用多媒体来呈现和运用,会更有效地突破了教学重难点。
2、本节课学生对平移了几格的方法没有很好的掌握好,也就是李老师在画龙点睛方面做得不够,讲评时不能在关键处进行提示和引导,给与点拨和评价,因此也就造成较多的错误。如果教师的“引”与学生的“探”能有机结合,那么整个教学过程就会更生动活泼,更富有个性。
八年级数学图形的平移dontletusdown篇五
(1)参与探索发现,领略知识形成过程
学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构
1.使学生掌握等腰三角形的判定定理及其推论;
2.掌握等腰三角形判定定理的运用;
4.通过自主学习的发展体验获取数学知识的感受;
5.通过知识的纵横迁移感受数学的辩证特征.
性质与判定的区别
直尺,微机
1、新课背景知识复习
(1)请同学们说出互逆命题和互逆定理的概念
估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:
(简称“等角对等边”).
由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.
已知:如图,△abc中,∠b=∠c.
求证:ab=ac.
教师可引导学生分析:
注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.
2.推论1:三个角都相等的三角形是等边三角形.
推论2:有一个角等于60°的等腰三角形是等边三角形.
要让学生自己推证这两条推论.
3.应用举例
已知:∠cae是△abc的外角,∠1=∠2,ad∥bc.
求证:ab=ac.
证明:(略)由学生板演即可.
补充例题:(投影展示)
1.已知:如图,ab=ad,∠b=∠d.
求证:cb=cd.
证明: de//bc(已知),
be=de,同理df=cf.
ef=de-df
ef=be-cf
小结:
(1)等腰三角形判定定理及推论.
(2)等腰三角形和等边三角形的证法.
教材 p.75中1、2、3.
教材 p.83 中 1.1)、2)、3);2、3、4、5.
更多内容了解,请关注应届毕业生考试网。

一键复制