在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
外加剂试验规程 外加剂必试项目篇一
m2m0x100 m1m0
一、固体含量x固=
1.式中
2.x固=固体含量,%
3.m0称量瓶的质量,g;
4.m1称量瓶加试样的质量,g;
5.m2称量瓶加烘干后试样的质量,g;
1.1烘干箱的温度在100。c-105。c烘30min,取出置于干燥器内冷却30min后称重,重复上述步骤直至恒量,其质量为m0。
1.2将被测试样装入已经衡量的称量瓶内,盖上盖称出试样及称量瓶的总质量为m1。
试样称量:固体产品1.000 0g~2.000 0g;液体产品3.000 0g~5.000 0g。
1.3将盛有试样的称量瓶放入烘干箱内,开启瓶盖,升温至100。c-105。c(特殊品种除外)烘干,置于干燥器冷却30min后称量,重复上述步骤直至恒量,其质量为m2
2.1允许差
室内允许差为0.30%;
室间允许差为0.50%。
外加剂试验规程 外加剂必试项目篇二
浅谈混凝土外加剂对水泥的适应性 外加剂在不同水泥中的应用效果:工作中采用净浆流动度及流动度经时损失来检验外加剂对水泥的适应性。
在工作实践中,外加剂与水泥适应性比较好的判别标准归纳为:1)混凝土和易性明显改善,密实性好;2)减水效果显著,混凝土龄期强度大幅度增长;3)能有效地控制坍落度经时损失。水泥适应性差表现为:1)混凝土在搅拌过程中出现异常凝结; 2)减水效果不明显;3)新拌混凝土坍落度损失较大;4)混凝土泌水率增加,分层离析现象严重。影响外加剂对水泥适应性的因素
2.1 水泥矿物成分对适应性的影响 影响水泥适应性的主要因素是水泥中铝酸三钙c3a及硅酸三钙c3s的含量,大量试验验证,c3a含量低而c3s含量较高的适应性较好,混凝土强度也高,而c3a含量越高,掺用外加剂后应用效果越差。由于c3a水化反应快,减水剂进入到水泥后,首先被c3a吸附,在减水剂掺量不变的条件下,c3a含量高的水泥由于大量吸附了减水剂,必然使得溶液中减水剂浓度迅速下降,用于分散c3s和c2s等其它组份的含量显著减少,工作状态明显变差,因此c3a含量高的水泥减水效果较差。
2.2 调凝剂对水泥适应性的影响
水泥常用的调凝剂为石膏,石膏品种又分为:二水石膏、半水石膏和硬石膏,这几种石膏都可作水泥调凝剂,但是硬石膏溶解性差,对有的外加剂如糖钙、木钙等,不但不能促进石膏溶解,反而使水泥因缺少调凝成分而产生混凝土假凝或急凝现象,原因是水泥中用硬石膏或者是工业废料石膏作调凝剂。研究资料表明:调凝剂影响水泥的适应性还与石膏的细度及用量有关,如石膏研磨细度不够会影响石膏的溶解性,即使应用二水石膏也会产生急凝现象,在c3a含量高的水泥中,调凝石膏仍按常用量掺加,不论选用何种石膏,混凝土凝结时间也会提前,这主要是水泥中c3a水化最快,c3a含量较高,少量石膏不能满足它的吸附,从而影响了石膏的调凝效果。但有的水泥c3a含量并不高,采用的是溶解性较好的二水石膏,石膏的用量和细度也合格,却仍会出现不正常凝结现象,经研究发现主要是石膏研磨温度的影响,水泥生产厂为了缩短熟料冷却时间,经常将温度较高的熟料与石膏同磨,二水石膏在150℃高温下脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性差的硬石膏,从而影响了水泥的适应效果。2.3 粉煤灰、磨细矿渣等掺合料对水泥适应性的影响
掺合料的种类、细度对减水剂的适应性都有影响。由于火山灰质掺合料具有较大的内比表面积,吸附量大,一般来说,减水剂对掺矿渣掺合料水泥的适应性好,而对掺火山灰质混合材的适应性差。对于掺粉煤灰掺合料的水泥,不同品种的粉煤灰,对适应性影响差异很大,优质细粉煤灰,超细粉煤灰中含有球状玻璃体,对减水剂的吸附量小,适应性好。对粗粉煤灰,含碳量高的适应性差。
可以得出胶料中所含部分成分对减水剂的吸附量由强到弱为:c3a>二水石膏>煤矸石>c2a>矿渣。另外,减水剂与水泥适应性的影响因素还有水泥组份中碱含量,碱含量大,流动度小;水泥越新鲜,适应性越差;水泥温度越高,适应性越差;减水剂自身特性等等。3 解决外加剂对水泥适应性的措施
3.1 改变外加剂的掺入时间,即采用滞水法或二次掺加法、载体流化剂法。3.2 适当增加外加剂掺量也有一定的效果。3.3 在不影响工作性条件下,适当调整混凝土水灰比,以便保证石膏有一定的溶解度。3.4 采用复合缓凝组份,取长补短,或普通减水剂与高效减水剂同掺,主要是因为不同分子结构的相互作用,应用技术效果会明显提高,不但能够降低生产成本,而且弥补了产品单一所带来的缺陷。3.5 采用缓释剂或加入引气剂。3.6 萘系减水剂坍损大,可换用氨基磺酸盐类或聚羧酸系类减水剂,可减小损失
什么是水泥与外加剂适应性?有哪些改善措施?
a:水泥与外加剂适应性就是水泥和所用外加剂在使用过程中是否匹配,即将经检验符合有关标准的某种外加剂掺加到用按规定可以使用该品种外加剂的水泥所配制的混凝土中,若能够产生应有的效果,我们就认为该水泥与这种外加剂是适应的;相反,如果不能产生应有的效果,则该水泥与这种外加剂之间存在不适应性。产生原因归纳起来有:
熟料矿物成分: 熟料中c3a,对减水剂分子的吸附程度很高,削弱有效外加剂掺量。水泥的碱含量: 水泥中na2o和k2o含量,对适应性会产生很大影响,尤其是混凝土坍落度损失增大。
石膏形态: 无水或半水石膏表面极易与减水剂分子形成吸附膜层,使之无法溶出为水泥浆体所需要的so4-离子,无法快速与水化铝酸盐生存难溶的水化硫铝酸钙,造成c3a大量水化,出现相当数量的相互连接的水化铝酸钙结晶体,导致混凝土坍落度损失过快,重者混凝土异常快凝。
水泥细度: 水泥颗粒对减水剂分子具有吸附性,水泥颗粒越细、比表面积越大,即对减水剂吸附量也越大。
水泥新鲜度: 越新鲜的水泥所带的正电性较强,对外加剂的吸附能力就大。水泥温度: 水泥温度越高,水泥水化反应加快,混凝土坍落度损失也越快。
改善措施(除水泥):
外加剂采用后掺法或分批添加法: 适当增加减水剂掺量:
复合一定量的反应性高分子材料: 适当复配保水、保塑的组分:
降低早期对外加剂的吸附量。弥补被吸附的外加剂量。减轻外加剂因吸附程度。减缓水化速度。包括选用聚羧酸类等。水泥企业粉磨系统优质高产、节能降耗的技术分析
水泥粉体状态与控制方法 : 水泥的群体颗粒具有高比表面积(单位质量物质的二相界面面积)与多分散性(某一样品中每一颗粒都不尽相同)两大特征。1.1 水泥细度: 水泥的粒度就是水泥的细度。水泥细度直接影响着水泥的凝结、水化、硬化和强度等一系列物理性能。
(1)当水泥磨得很细时,如80μm方孔筛筛余小于1%,控制意义就不大了。国外水泥普遍磨得很细,所以在国外水泥标准中几乎全部取消了这一指标。
(2)当粉磨工艺发生变化时,细度值也随之发生变化。如开流磨筛余值偏大,圈流磨筛余值偏小,有时很难根据细度来控制水泥强度。
(3)细度值是指0.08mm筛的筛余量,即水泥中≥80μm颗粒的含量(%)。众所周知,≥64μm的水泥颗粒的水化活性已很低了,所以用≥80μm颗粒含量的多少进行水泥质量控制,还不能全面反映水
泥的真实活性。
1.2 水泥的平均粒度:在水泥粉磨过程中,不是均匀的单颗粒,而是包含不同粒径的颗粒体--粒群,所以在评述水泥细度时若只用筛余这一简单的表示方法,差不多有90%多的水泥颗粒都通过筛孔成了筛下物,然而这些筛下物的颗粒大小并不清楚,故筛余量相同时比表面积也会出现很悬殊的现象。
平均粒度有几种表示法,如算术平均直径、几何平均直径、调和平均直径等。
水泥颗粒的平均粒度是表征水泥颗粒体系的重要几何参数,但所能提供的粒度特性信息则非常有限,因为两个平均粒度相同的粒群,完全可能有不一样的粒度组成(颗粒级配)。
1.3水泥比表面积:国外大多规定比表面积指标,一般都采用勃氏比表面积仪测定。我国的硅酸盐水泥和熟料的国家标准规定已与国外标准一致。水泥比表面积与水泥性能之间存在着较好的关系。但用比表面积控制水泥质量时,主要还有下述两方面的不足:
(1)比表面积对水泥中细颗粒含量的多少反应很敏感,有时比表面积并不很高,但由于水泥颗粒
级配合理,水泥强度却很高。
(2)掺有混合材料的水泥比表面积不能真实反映水泥的总外表面积,如掺有火山灰质混合材料,水泥比表面积往往会产生偏高现象。
1.4 水泥的颗粒级配(粒度分布):即使筛分细度相同或比表面积相近,水泥的性能有时也会表现出较大的差异,原因是粒度分布可能不同(颗粒形状的因素也很重要),因此研究水泥粒度的表征、探索其与水泥强度之间更精确的定量关系,有着重要的意义。
国内外长期试验研究证明,水泥颗粒级配是水泥性能的决定因素,目前比较公认的水泥最佳颗粒级配为:3~32μm颗粒对强度的增长起主要作用,其粒度分布是连续的,总量应不低于65%;16~24μm的颗粒对水泥性能尤为重要,含量愈多愈好;小于3μm的细颗粒,易结团,不要超过10%;大于64μm的颗粒活性很小,最好没有。
此外,水泥粒度分布(颗粒级配)不当,还会影响水泥水化时的需水量(和易性)。若为了达到水泥砂浆的标准稠度而提高了用水量,则最终会降低硬化后的水泥或混凝土的强度。因此掌握水泥颗粒级配的指标是很重要的。表示水泥粒度分布即颗粒级配的方法有列表法、作图法、矩阵法和函数法。1.5水泥颗粒形貌: 20世纪90年代,人们开始研究水泥颗粒形貌对水泥性能的影响。水泥颗粒如果放在电子显微镜下观察,它的形貌并不是圆的,犹如破碎堆积的石灰石,有棱角小的,有棱角大的,有片状的,有针状的。水泥颗粒的形貌与粉磨工艺有关。
水泥颗粒形貌通常用圆度系数(f)表示,圆形颗粒的圆度系数等于1,其它形状则都小于1。国外水泥的圆度系数,大多在0.67左右。中国建材科学研究院测定的我国部分大、中型水泥企业水泥的圆度系数平均值为0.63,波动在0.51~0.73之间。同时在对水泥颗粒形貌的研究中还发现:水泥磨机的研磨能力愈强,f值愈大;高细磨水泥f最大;带辊压机预粉碎的磨机磨制的水泥f值也较大。试验研究表明,将水泥颗粒的圆度系数由0.67提高到0.85时,水泥砂浆28d抗压强度可提高20%~30%。水泥颗粒特征及粉磨工艺对水泥强度的影响
摘要:介绍了国内某大型现代干法水泥厂的粉磨设备、粉磨工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该厂水泥颗粒特征和熟料、水泥物理性能等实际生产数据的解析,以实例证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。通过调整水泥粉磨设备和粉磨工艺,使水泥粒度分布接近于理想分布,水泥强度可以显著提高。试验表明80μm筛余或比表面积均难以准确反映水泥的粒度分布。通过分析,从水泥性能的角度给出了水泥厂粉磨设备、粉磨工艺和水泥产品颗粒分布的一个参考标准。介绍了该工厂水泥粉磨过程的质量检验、质量控制方法。该厂经验表明,按gb/t 17671—1999检验的水泥强度与水泥的比表面积在许多时候没有明确的相关关系,30μm筛余或45μm筛余是水泥粉磨过程适宜的控制指标,在使32μm筛余或45μm筛余处于控制范围的同时,还应该对rrb分布曲线的特征粒径 和均匀性系数(n)进行控制,定期检查和控制水泥的粒度分布是非常必要的。本文介绍了国内某大型现代干法水泥厂(中日合资企业,)的粉磨设备、工艺、水泥颗粒特征和熟料、水泥的物理性能。通过对该工厂水泥颗粒特征和熟料、水泥性能的分析,以及对工业生产实际数据的分析,证实了水泥颗粒特征及粉磨工艺对水泥性能的影响程度。同时介绍水泥粉磨过程的质量控制方法和控制指标。希望更直接地为有关方面提供借鉴。1 粉磨设备、工艺概况
该工厂的水泥粉磨采用ckp立磨+球磨联合闭路粉磨系统,ckp立磨规格为ckp-170;球磨双仓规格为φ3.9m×12m。旋风式选粉机。系统产量115t/h×2。
熟料和石膏经过破碎机一次破碎至≤40mm的颗粒占95%以上,喂入ckp立磨,出ckp立磨的物料≤10mm的颗粒占95%以上,约10%返回ckp立磨,约90%出ckp立磨的物料和选粉机回粉共同进入球磨。出球磨物料和粉煤灰共同进入选粉机,选粉机的选粉效率约60%,循环负荷率约260%。水泥品种等级大部分为p.o 42.5r,少量为 42.5r,两个品种水泥平均电耗39kwh/t-cem。使用占水泥重量比0.02%-0.03%左右的助磨剂。水泥的颗粒特征
2.1 颗粒形貌:使用jcm-35c型扫描电镜及配套的统计计算软件对p.o 42.5r和 42.5r水泥进行了水泥颗粒圆形度分析。p.o 42.5r水泥的颗粒圆形系数0.58, 42.5r水泥的颗粒圆形系数0.54。我国部分大中型水泥企业水泥的圆形系数平均值为0.63,波动在0.51-0.73之间。国外水泥的圆形系数大约在0.67左右。比较起来,该工厂水泥的圆形
系数有待进一步提高。
2.2 颗粒分布、细度 :使用负压筛测定15μm、20μm、32μm、45μm、63μm筛余,使用回归分析的方法求得rrb(rosin-rammlar-bennet)公式中的两个参数:特征粒径 和均匀性系数(n)。因为回归的相关系数(r)高达0.999,可以很准确地计算任意孔径筛余。
42.5r水泥的特征粒径 =19.7μm,均匀性系数n=1.28,比表面积327m2/kg。p.o 42.5r水泥的特征粒径 =19.1μm,均匀性系数n=1.27,比表面积366m2/kg。两种水泥的粒度分布基本一致。计算得到的不同尺寸颗粒含量为:0~1μm的颗粒占2%;0~3μm的颗粒占9%;3~32μm的颗粒占76%;大于45μm的颗粒占5%;大于63μm的颗粒占1%。上述数据已经非常接近理想数值。1#熟料的特征粒径 =25.5μm,均匀性系数n=1.11;2#熟料的特征粒径 =23.3μm,均匀性系数n=1.06; 3 熟料、水泥检验结果 3.1 样品制备方法、检验方法 3.1.1 熟料样品制备方法、检验方法 熟料样品按jc/t853-1999《硅酸盐水泥熟料》规定的方法进行制备和检验。3.1.2 水泥检验方法 按gb175-1999规定的方法检验。3.2 熟料、水泥检验结果 与熟料28天抗压强度比较, 42.5r水泥28天抗压强度高约6mpa,p.o 42.5r水泥28天抗压强度高约4mpa。这一差别主要是由于化验室小磨与生产设备粉磨产品的粒度分布不同造成的。4 水泥粉磨过程的质量控制方法和控制经验 4.1 水泥粉磨过程的质量控制方法 15μm、20μm、32μm、45μm、63μm筛余采用德国产进口负压筛和筛网按日本方法测定。德国产进口负压筛的工作原理和设备结构与国内负压筛基本一致,区别在于德国产进口负压筛的筛网尺寸为内径70mm,测定时称样量为1g。这一区别使得德国产进口负压筛与国产负压筛比较,工作时风量较大,筛孔不易堵塞。该设备8min-10min即可完成32μm筛余的测定,4min-6min即可完成45μm筛余的测定。该设备机械加工精度很高,故障率极低,操作简便,测定时间短,测定结果稳定、准确,可以用于
例行生产控制。国内许多水泥企业采用激光粒度分析仪测定水泥的粒度分布。该工厂对同一个样品使用负压筛和激光粒度分析仪进行了平行的粒度分布检验,结果表明:对于10μm以上的水泥颗粒,激光粒度分析仪可以得到与负压筛非常一致的检验结果;对于10μm,特别是5μm以下的颗粒,激光粒度分析仪的检验结果比负压筛略高。其中一个主要原因是非常细小的水泥颗粒在范德华(vander waals)力的作用下集结为颗粒团,使用负压筛检验时颗粒团不易被分散;使用激光粒度分析仪检验时,颗粒团在有机介质中被充分分散。激光粒度分析仪作为水泥企业定期检验水泥粒度分布的一种方法是适宜的,但是由于其测定操作复杂,时间长,仪器故障率高,不适合例行质量控制使用。
4.2 水泥粉磨过程的质量控制经验
4.2.1 细度 :该工厂以32μm筛余作为粉磨过程例行控制的依据。在32μm筛余处于控制目标范围时,80μm筛余为0.2%-0.4%,几乎没有波动,如果以80μm筛余作为粉磨过程例行控制的依据,那么几乎无法对粉磨设备作出任何调整。由于设备故障原因,32μm筛余曾经偶然发生很大波动,由原来的控制目标值16%变为20%。单独对该部分水泥进行检验,28天抗压强度比细度正常时下降约4mpa,此时水泥80μm筛余并没有明显变化,仅由0.3%变为0.8%。这一事实表明,在水泥细度较细时,80μm筛余很难反映水泥的粉磨情况,不宜作为水泥粉磨过程的质量控制指标。该工厂的生产经验表明,以32μm筛余或45μm筛余作为水泥粉磨过程的质量控制指标是适宜的。国外多数先进水泥企业对水泥粉磨过程也正是
采取的这一质量控制方法。4.2.2 比表面积:在该工厂,虽然每4h进行一次比表面积测定,但是比表面积的测量值仅供参考,并不作为粉磨过程例行控制的依据。通过对出磨水泥数据的统计分析发现,强度与比表面积之间没有很好的相关关系。比表面积对被测样品中的细粉非常敏感,该工厂p.o 42.5r和 42.5r水泥的粉磨工艺参数一致,因为p.o 42.5r水泥掺入了12%含有较多细粉的粉煤灰,致使p.o 42.5r的比表面积比 42.5r高出30m2/kg。但是p.o 42.5r和 42.5r水泥中的熟料部分粉磨程度是基本一致的。许多研究[5-7]也表明,比表面积不能很好反映水泥的颗粒分布等粉体状态。在实施新水泥标准之前,我国许多水泥企业不重视比表面积的测定;实施新标准以后对于水泥粉磨过程认识有所提高,许多水泥企业开始重视比表面积的测定。但是该工厂的经验表明,以比表面积作为粉磨过程例行控制的依据是非常粗略的。4.2.3 颗粒分布:与水泥的物理性能特别是强度密切相关的水泥中熟料及混合材的粒度分布。熟料的粒度分布与熟料的水化速度、一定时间内的水化程度、标准稠度需水量、混凝土的水灰比密切相关。熟料与混合材的粒度分布共同决定了水泥颗粒的最紧密堆积密度。许多资料[
7、8]也强调了水泥颗粒分布的重要性,并提出了水泥颗粒分布的理想数据。如果不考虑粉磨设备、煤磨电耗等因素的影响,我们应该使水泥的粒度分布接近理想数据,并在例行控制中测定水泥的粒度分布,以水泥的粒度分布作为粉磨过程例行控制的依据。我国多数水泥厂的现实情况是,使用80μm筛余或比表面积作为粉磨过程例行控制的依据,对水泥的粒度分布较少关注,80μm筛余或比表面积与颗粒分布均没有很好的相关关系。该工厂的经验表明,在粉磨设备及其运转参数没有明显改变时,32μm筛余或45μm筛余能够很好地反映颗粒分布。使用32μm筛余或45μm筛余为粉磨过程例行控制的依据,在粉磨设备及其运转参数发生明显改变时,可能通过简单的调节,比如选粉机的转数(风量),使32μm筛余或45μm筛余保持在控制目标之内。因此,使用32μm筛余或45μm筛余为粉磨过程例行控制的依据,在粉磨设备及其运转参数发生明显改变时并不能很好反映粒度分布。曾经发现,在32μm筛余没有明显改变的情况下,45μm筛余发生了明显增加,此时检验水泥粒度分布发生明显变化,强度降低。使用rrb公式可以很好地对水泥颗粒分布进行拟合,控制rrb公式中的两个参数特征粒径 和均匀性系数(n)即可达到控制粒度分布的目的。该工厂测定15μm、20μm、32μm、45μm、63μm筛余,通过回归分析求得rrb公式,相关系数(r)很高,可以达到0.98以上。该工厂定期或在怀疑粒度分布有问题时使用该方法测定粒度分布。有一种比较简便的方法可以大致判断粒度分布是否正常,如果使用32μm筛余或45μm筛余作为粉磨过程例行控制的依据,并且32μm筛余或45μm筛余处于正常控制范围,可以增加测定另一个小于63μm的筛余,这个筛余的尺寸与例行质量控制筛余的尺寸至少相差10μm。将测得的筛余与以往粒度分布正常的数据进行比较,如果增加测定的筛余数据与以往粒度分布正常的数据具有明显区别,则提示粒度分布可能具有明显变化。例如该工厂正常情况下,32μm筛余大约16%±1.5%,45μm筛余大约5%±1.5%,如果32μm筛余处于正常控制范围,45μm筛余超出目标值3%,则提示粒度分布可能具有明显变化。4.2.4 助磨剂 :该工厂在水泥粉磨时添加占水泥重量比0.02%-0.03%的助磨剂,使用效果良好。曾经发生助磨剂的短时间中断,尽管此时调整选粉机转数,使水泥的32μm筛余仍然处于控制范围之内,但是水泥的rrb公式中的两个参数特征粒径 和均匀性系数(n)发生了明显变化,即水泥的颗粒分布发生了明显变化,水泥强度也随之明显降低。5 结论 5.1 水泥粉磨设备、粉磨工艺合理,水泥粒度分布接近理想分布,则水泥强度可以明显提高。在该工厂与熟料28天抗压强度比较, 42.5r水泥28天抗压强度高约6mpa,p.o 42.5r水泥28天抗压强度高约4mpa。5.2 与水泥物理性能特别是强度密切相关的是水泥的粒度分布,80μm筛余或比表面积均难以准确反映水泥的粒度分布。测定32μm筛余或45μm筛余为粉磨过程例行控制的依据是适宜的。在使32μm筛余或45μm筛余处于控制范围的同时,还应该对rrb分布曲线的特征粒径 和均匀性系数(n)进行控制,定期检查和控制水泥的粒度分布是必要的。5.3 立磨+球磨是一种较好的水泥粉磨设备,粉磨产品质量好,电耗合理。5.4 合理选用助磨剂有利于改善水泥的粒度分布,减轻过粉磨现象,减少小于3μm以下颗粒的数量。5.5 与激光粒度分析仪比较,负压筛更适合于例行质量控制。在即将颁布的国家标准gb/t 1345-××××《水泥细度检验方法》中已经列入了45μm负压筛的检验方法。谈混凝土外加剂与水泥的适应性及对混凝土性能的影响
1.0 前言 对水泥混凝土的要求也越来越高,不仅要求混凝土可调凝、早强、高强、大流动度、高密实性、高耐久性、低水化热、轻质,而且要求制备成本低、成型容易、养护简便……。
混凝土外加剂的特点是品种多、掺量少,在改善或提高新拌和硬化混凝土的性能中起着重要的作用,新拌混凝土工作性能明显改善;能有效控制混凝土的凝结时间与坍落度损失;后期强度有较大的增长;增加混凝土的密实性,抗渗、抗冻、抗炭化等耐久性指标有较大的提高,硬化混凝土有较好的体积稳定性等。2.0 混凝土外加剂与水泥的适应性
混凝土外加剂与水泥的适应性问题,涉及水泥化学、高分子材料学、表面物理化学和电化学等多方面的知识。从工程实践的情况来看,问题仍然很多,如同品种同掺量的外加剂,对不同品种的水泥,效果差异极大,甚至同一种水泥,但不同时期效果也有差别,使用同一批外加剂的水泥净浆流动度时大时小,其混凝土的坍落损失有时忽大忽小,甚至有时泌水、有时又不泌水、凝结时间的差异也很大,时而还会出现促凝现象等等,这些就是外加剂与水泥的适应性问题。2.1外加剂与水泥不相适应
主要表现在减水效果低下或增加流动性的效果不好、凝结速度太快或缓凝、坍落度损失快,甚至降低混凝土强度等,这种种不适应的问题与外加剂的品种、作用机理、原材料的选用与制造工艺、胶凝材料的成份、细度、水泥磨细阶段工艺的差异有关,其他如环境温度、加料方式和外加剂用量也会产生影响。2.2外加剂品种与性能的影响
外加剂特别是化学合成的高效减水剂性能对水泥净浆流动的影响。如萘系高效减水剂的性能涉及磺化程度与磺化产物,缩合工艺与程度,分子量大小,平衡离子,分子结构等各种因素。水泥等无机矿物颗粒由于范德华力、不同电荷的静电互相作用、水化颗粒的表面化学作用,导致粒子形成聚集结构,束缚一部分水,不能用于滑润水泥粒子,也不能立即用于水化。加入高效减水剂等外加剂后,由于吸附作用和电荷斥力,使水泥粒子分散,絮凝结构解体,释放束缚水并阻止粒子的表面相互作用,使水泥浆体的流动性增大,其增加的大小与其技术性能及掺量有关。
聚羧酸盐(pc)及氨基磺酸盐(as)、羰基磺酸盐类(saf)、萘系(ns)的流动度大,木质素磺硫酸盐类(ls)流动度小,效果差。ns是使水泥料粒子形成双电层的静电斥力而分散,sa是使水泥颗粒表面的外加剂层互相作用的空间斥力而分散,saf与pc是静电斥力和空间斥力两种力的作用而分散,因而效果更好。2.3 水泥矿物组份与化学成份的影响
水泥胶结料的矿物质成份和化学成份对外加剂吸附量的多少,对于流动性及强度增长有很大的影响。外加剂吸附量越少的水泥浆体的流动度值越大。c3a、c4af混水后,ζ电位呈正值,较多地吸附外加剂。c3s、c2s混水后ζ电位呈负值,吸附量较少。在水泥矿物中c3a需水量大,水化快,放热大,吸附外加剂量最大,依次为c4af、c3s、c2s。c3a含量对相容性的影响远比c4af大,这是由于高效减水剂优先吸附于c3a或其初期水化物的表面,c3a的水化速度比c4af快。水泥中c3a、c4af含量低对外加剂适应好,混凝土体积稳定性好,开裂趋势减少。
2.4水泥细度与颗粒形貌的影响
水泥过细比表面积增加,需水量大,更加降低了液相中残留外加剂浓度,增加了液体粘度,塑化效果变差,混凝土坍落度损失更快;水泥过细水化速度快水化热高,容易产生裂缝。
2.5掺合料的影响
根据国家标准,允许在水泥中掺入一定量的掺合料,常用掺合料有水淬高炉矿渣、粉煤灰、沸石粉、火山灰、煤碱石、窑皮等,掺合料性能不同,也会影响外加剂对水泥的适应性。
2.6调凝剂的影响
调凝剂(石膏)的形态、细度、用量、研磨温度等均有影响。
石膏又分为二水石膏、半水石膏、硬石膏。根据有关标准,三种石膏都可作水泥调凝剂使用,而其中硬石膏溶解性能较差,一些外加剂如糖钙、木钙等与硬石膏同用,不但不能促进石膏溶解,反而会降低硬石膏的溶解度,使水泥因缺少调凝成份而产生速凝等异常凝结。就是半水石膏,也由于caso4.1/2h20→caso4.2h2o的结晶,水泥与水拌合后,反应就十分迅速,而且消耗大量水,不同水泥与高效减水剂相容性上的差别,这也是其中一个重要原因。
石膏研磨细度不够,会影响石膏的溶解性,即使运用二水石膏也会产生速凝等现象。
在c3a含量偏高的水泥中,调凝剂仍按常规用量(3—5%),无论选用何种石膏,凝结时间都会提前,这主要是水泥中c3a水化快,c3a含量增加,少量石膏不能满足它生成胶状钙矾石,从而影响了石膏的调凝效果。尽管水泥和外加剂都合格,但影响水泥与外加剂的适应性,使混凝土工作性变差,坍落度损失加大。
水泥厂为了缩短熟料冷却时间,经常将温度较高的熟料与石膏同磨,二水石膏在150℃高温下会脱水成为半水石膏,温度再高至160℃以上,半水石膏还会成为溶解性较差的硬石膏,影响水泥的适应效果,使混凝土流动性变差,甚至出现假凝。2.7碱含量的影响
水泥中的碱主要来源于所用原材料,特别是石灰和粘土。含碱量越低,相容性越好,高含碱量则会加速水泥的早期水化速率,导致需水量增大并且加快工作度损失,塑性效果变差。
2.8新鲜水泥存放时间与温度的影响
陈国忠等通过试验认为:新鲜水泥在生产后12天内对外加剂吸附量较大,大部分15天后趋于正常。由于新鲜水泥干燥度高,而且温度相当高(达80℃—90℃),早期水化快、水化时发热量大,所以需水量大,而且对外加剂的吸附量也大,同等掺量时,流动度变小,必然会产生对混凝土的需水量大、坍落度损失快、凝结时间短等许多怪现象。这完全是因为水泥存放时间的不同,导致混凝土的性能技术指标出现较大差异,如能注意到这些问题,有了这方面的认识和经验,出现此类现象也就不足为怪了。
在外加剂已供施工现场的情况下,可通过调整增加掺量来解决新鲜水泥与外加剂不兼容的问题,其调整幅度视水泥新鲜的程度和对外加剂的适应性而定。3.0 混凝土外加剂对混凝土性能的影响
3.1现代混凝土施工技术的发展离不开外加剂,特别是高效减水剂在高强与高性能混凝土技术的发展中所起主导作用。
3.2混凝土外加剂的发展促进混凝土技术的发展。
根据混凝土设计与施工的要求,研究、开发了混凝土外加剂,外加剂技术的发展又促进了混凝土施工技术的发展。使混凝土技术从塑性混凝土向-干硬性混凝土-流态化混凝土-高性能混凝土方向发展。
正在研发中的聚羟酸类,象高效ae减水剂以及与超塑化剂精细配制的复合高效外加剂等新型高效减水剂可称为外加剂的第三代产品。它克服了第二代外加剂存在着坍落度经时损失大的缺点并兼顾耐久性的指标,将混凝土的高强、高施工性能、高耐久性三者结合起来。另外,它们还需进一步提高在低水灰比下的减水率,满足有的混凝土工程不仅提出高性能,而且要求能满足高功能化的要求。新型第三代高效减水剂具有20%以上高减水率,在60-90分钟的输送时间内具有能保持坍落度及所需稳定的含气量,能使用现场的成套设备或用商品混凝土设备制造出各项指标符合合要求的高性能混凝土。用它也可制造出单位用水量少,流动性高,穿透钢筋网片性能良好,能不振捣、自充填、不分离的高性能不振捣混凝土,并在使用中进一步改良与发展。
3.3选择与水泥相适应,能满足设计与施工要求的相应外加剂。
不同生产工艺、种类或配方与掺量的外加剂对水泥适应性有差别,应通过试验确定,选用质量稳定、适应性好的外加剂;同时根据不同设计与施工要求,选择相应的各类外加剂,如高效减水剂或缓凝高效减水剂、泵送剂、防水剂……等;根据设计与施工要求,结合现场实际使用材料,进行试配,确定合理施工配合比与外加剂适宜掺量。3.4 大剂量高效减水剂对新拌混凝土稳定性的影响[2]
随着高强混凝土和泵送工艺日益广泛的应用,原来掺量不仅减水率达不到要求,而且由于水灰比减小、浇筑时工作度要求增大,新拌混凝土的工作度损失加剧,不能满足较长距离运输的施工要求,因此高效减水剂的掺量逐渐增大,研究与应用的实践表明:大掺量高效减水剂使混凝土在水胶比很低的条件下,仍能具有较大的流动性,可以成型密实,生产强度与耐久性良好的高强和高性能混凝土。另一方面,在大掺量高效水剂条件下,新拌混凝土的工作度损失率看来也减小了,其机理是:新拌混凝土中水泥的的硫酸钙含量与形态,影响液相中so4-的浓度,是其流变行为的控制因素之一,低水胶比混凝土由于溶解硫酸盐产生so4-离子的水分少,而需要控制的c3a量又多,相对而言,有较多的c3a就地水化。因为缺少硫酸根离子,高效减水剂分子上的磺酸根基因就会与c3a结合,使液相里的高效减水剂量下降,逐渐失去对水泥的分散作用,加速其工作度的损失。增大高效减水剂的掺量,使液相里的so4-离子量增加,故工作度损失率减小。
但是,每一种高效减水剂——水泥之间的搭配,都有一相应的饱和浓度。对于大多数高效减水剂——水泥的体系,其饱和浓度约为0.8——1.2%。在配制高强与高性能混凝土时,高效减水剂的掺量通常要接近或等于其饱和掺量,但需要特别注意控制高效减水剂的适宜剂量,需要与其外加剂和矿物掺合料使用,才能获得预期的效果,对于不同的高效减水剂品种,产生这种现象的敏感性不一样,有时掺量在增减0.1%——0.2%范围内变动,就会从减水率还不够理想跃变为稳定性不佳的另一极端,这种情况给混凝土配制和施工质量控制都带来不便,或者说更高的要求。3.5其他因素对混凝土性能的影响。
要配制品质优良新拌混凝土与获得良好的硬化混凝土,必须注意满足对原材料选择,合理的配合比以及施工要求。
3.5.1水泥的矿物组份和化学成份以及物理技术指标 选择满足设计与施工技术要求的水泥品种。如配制高性能混凝土用的水泥,最好使用c3a含量低、c2s含量高的水泥,混凝土流动性大,坍落度与扩展度的经时变化也少,如果使用的水泥c3a<3%,c4af<7%,c3s在40-50%,c2s在50-40%,这样的水泥制作高性能混凝土效果会较好。
3.5.2保证砂、石质量,原材料用量准确
砂的含泥量与细度模数必须符合要求,碎石的含泥量及针片状不超标,最好选用连续级配或单粒级石子,粒径适中;原材料质量保证,用量准确;
3.5.3通过设计与试配,确定合理的配合比,必要时需进行适当调整。
施工配合比虽然是设计问题,但它是影响混凝土性能的关键因素,如泵送混凝土适当提高砂率可提高混凝土可泵送性,但砂率过高也会影响混凝土的保塑性能,增加混凝土坍落度的经时损失率。降低水灰比可以提高混凝土强度,而在较低水灰比条件下配制掺外加剂混凝土应有一最低用水量,这不但是保证混凝土有一定工作性,更重要的是保证水泥在水化时,石膏有足够的溶解用水,石膏在缺水时会大大影响溶解度,影响外加剂对水泥适应性。
高效减水剂掺量过多时,水泥浆的流动度大,浆体稀薄,不足以维持与集料的粘聚,往往会引起混凝土离析、泌水,此时可以适量增加用砂量,增加胶凝材料用量或是适量减少高效减水剂用量或用水量,产生离析的混凝土拌和物有害于工程质量。3.5.4注意水泥的出厂及进货时间。
砂、石、水泥及外界的温度对水泥与外加剂适应性都有着不同程度的影响。特别是刚出厂的水泥温度有时高达80℃-90℃,在高温情况下,需水量与外加剂吸附量增大,坍落度减少,坍落度损失加快,适当增加外加剂的掺量,增加混凝土中外加剂残留率也有比较明显的效果。
3.5.5掺入部分活性掺合料
试验证明具有一定活性的水硬性材料或自硬性材料,如硅灰、磨细矿渣粉、粉煤灰等在满足一定的技术要求条件下与外加剂同掺,不但节约水泥,改善混凝土工作性,提高混凝土强度,还能改善外加剂对水泥的适应性。3.5.6保证施工质量
保证制摸质量、防止漏浆与支架变型、钢筋变位;施工中混凝土要振捣密实,防止漏振或振捣过度;及时利用原浆收光面层,在初凝前再进行二次压实收面,可减少塑性裂缝;混凝土浇注后表面泛白或8小时内及时浇水养护或喷养护剂,最好加薄膜密封养护或复盖湿麻袋养护,养护日期不少于14天,以免因施工质量不佳而引起与外加剂无关的异常现象。
外加剂试验规程 外加剂必试项目篇三
外加剂(基准配合比)
基准配合比按jgj55进行设计,参非引气型外加剂混凝土和其对应的基准混凝土水泥,砂,石的比例相同,配合比设计应符合以下规定: 1.水泥用量:参高性能减水剂或泵送剂的基准混凝土和受检混凝土的单位用水泥量为360kg/m³,参其他外加剂的基准混凝土和受检混凝土单位水泥用量为330kg/m³
2.砂率:参高性能减水剂或泵送剂的基准混凝土和受混凝土的砂率均为43-47%,参其他外加剂的基准混凝土和受混凝土的砂率均为36-40%,但参因引气减水剂或引气剂的受检混凝土的砂率应比基准混凝土砂率低1-3%。
3.外加剂参量,按生产厂家指定参量。
4.用水量:参高性能减水剂或泵送剂的基准混凝土和受检混凝土的坍落度控制在(210±10)mm,用水量为坍落度在(210±10)mm时的最小用水量,参其他外加剂的基准混凝土和受检混凝土的坍落度控制在80±10mm, 5.用水量包括液体外加剂,砂,石材料中所含的水量。6.混凝土搅拌:搅拌机的拌合量应不少于20l,不宜大于40l.7.外加剂为粉状时,将砂、石、水泥、外加剂一次投入搅拌机,干拌均匀,在加入拌合水,一起搅拌2min,外加剂为液体时,将水泥、砂、石一次投入搅拌机,干拌均匀,再加入参入外加剂的拌合水一起搅拌2min,出料后,在铁板上用人工翻拌均匀,再行试验,各种混凝土试验材料及环境温度均应保持在20±3℃。
坍落度和坍落度1h经时变化量测定
每批混凝土取一个试样,坍落度和坍落度1h经时变化量均以三次试验结果的平均值表示,三次试验的最大值和最小值与中间值之差有一个超过10mm时,将最大值和最小值一并舍去,取中间值作为该批试验结果,最大值和最小值与中间值之差均超过10mm,则应重做。
坍落度及坍落度经时变化量测定值以mm表示结果表达值约到5mm。
坍落度测定:混凝土坍落度按照gb/t50080测定,但坍落度在210±10mm的混凝土,分两层装料,每次装入筒高的一半,每层勇插捣棒插捣15次。
减水率测定:减水率为坍落度基本相同时,基准混凝土和受检混凝土单位用水量之差与基准混凝土单用水量之比。
减水率按式:wr=﹙wo-w¹﹚/wo*100 计算精确至0.1% 减水剂以三批试验的算术平均值计算,精确至0.1%。若三批试验的最大值或最小值与中间值之差超过中间值的15%时,则把最大值与最小值一并舍去,取该组中间值作为试验的减水率,若有两个测值与中间值之差超过15%时,则该批试验结果无效,应重做。
泌水率比测定:按式rb=bt/bc*100精确至1% 泌水率测定和计算方法:先用湿布润湿容积为5l的戴盖筒(内径为185mm,高200)将混凝土拌合物一次装入,在振动台上振动20s,然后用抹刀轻轻抹平,加盖以防止水分蒸发。试样表面应比筒口低约20mm.自抹面开始计算时间,在前60min每隔10min用吸管吸出泌水一次,以后每隔20min吸水一次直至连续三次无泌水为止。每次吸水前5min应该将筒底一侧垫高约20min,使筒倾斜,以便于吸水。吸水后,将筒轻轻放平盖好。将每次吸出的水注入戴塞量筒。最后计算出总的泌水量。精确至1g。并按下列公式计算泌水率。
b=vw(w/g)gw*100 gw=g¹-gº
试验时,从每批混凝土拌合物取一个试样,泌水率取三个试样的算术平均值,精确至0.1%,若最大值或最小值与中间值之差超过15%时,取中间值作为该批的试验结果,若均超过15%,应取样重做
含气量和含气量1h经时变化量测定
以三个试样的平均值为表示,若最大值或最小值超过中间值0.5%时,取中间值的数值,若均超过0.5%时则应重做。含气量和含气量1h经时变化量测定值精确至0.1% 凝结时间测定:试验室,每批混凝土拌合物取一个试样,凝结时间去三个试样的平均值,若三批试验的最大值与最小值与中间值之差超过30min,一并舍去,取中间值作为该组的凝结时间,若最大值与最小值与中间值均超过30min,则应重做,并修约至5min.含固量:将洁净戴盖称量瓶放入烘箱内,于100-105℃烘30min,取出置于干燥器内,冷却30min后称量,重复上述步骤直至恒温,其质量为m,将被测试样装入已恒温的称量瓶内,盖上盖测出试样及称量瓶的总质量为m ¹(试样质量固体产品1.0000 ˜2.0000液体产品3.0000 ˜5.0000)将盛有试样的质量瓶放入烘箱内,开启瓶盖,升温至100-105℃(特殊品种除外)烘干,盖上盖置于干燥器内,冷却30min后称量,重复上述步骤直至恒温,其质量为m².精密密度计:先以波美比重计测出溶液的密度,再参考波比比重计所测得数据,以精密密度计准确的测出试样的密度值。
测试条件:
1.液体样品直接测试
2.固体样品溶液的浓度为10g/l 3.被测溶液的温度为20±1℃
4.被测溶液必须清澈,如有沉淀必须滤去。仪器:1.波美比重计 2.精密密度计 3.超级恒温器或同条件的恒温设备
实验步骤:将已恒温的外加剂倒入500ml玻璃量筒中,以波美比重计插入溶液中测出该溶液的密度,参考波美比重计所测溶液的数据,选择这一刻度的精密密度计插入溶液中,精确读出溶液凹面与精密密度计相齐的刻度即为该溶液的密度ρ
混凝土外加剂对水泥适应性检测方法
检测所用设备仪器应符合下列规定
1.水泥净浆搅拌机
2.截锥形圆膜上口内径36mm下口内径60mm,高度60mm内壁光滑无接缝的金属品 3.玻璃板 400*400*5 4.钢直尺 300mm 5.刮刀、秒表(时钟)、药物天平称量100g感量1g/电子天平称量50g,感量0.05 水泥适应性检测方法按下列步骤进行:
1.将玻璃放置在水平位置,用湿布将玻璃板、截锥形圆膜、搅拌器及搅拌锅均匀擦过,使其表面湿而不带水滴。2.将截锥圆模放在玻璃板中央,并用湿布覆盖待用 3.称取水泥600g,倒入搅拌锅
4.称取水泥需选用外加剂时,每种外加剂应分别加入不同参量,对某种外加剂选择水泥时,每种水泥应分别加入不同参量的外加剂,对不同品种外加剂,不同参量的分别进行试验。5.加入174g或210g水(外加剂为水剂时)应扣除其含水量,搅拌4min 6.将搅拌好的净浆迅速倒入截锥形圆膜按垂直方向提起,同时开启秒表计时,至30s用直尺量取流淌水泥净浆互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度(初始)此水泥不再倒入搅拌锅内。
7.已测试过流动度的水泥净浆应舍去,不再装入搅拌锅内,水泥净浆停放时,应用湿布覆盖搅拌锅.8.剩留在搅拌锅内的水泥净浆,至加水后30min,60min开启搅拌机,搅拌4min。按本规定分别测定相应时间段的水泥净浆流动度,测试结果按下列方法分析
a.绘制以参量为横坐标,流动度为纵坐标的曲线,其中饱和点(外加剂参量与水泥净浆流动度变化曲线的拐点)外加剂参量低流动度大,流动度损失小的外加剂对水泥的适应性好。b.需注明所用外加剂和水泥的品种、等级、生产厂家、实验室温度等。如果水灰比(水胶比)与本规定不符,也需注明。混凝土拌合物坍落度和坍落度扩展值以mm为单位,测量精确至1mm,约表达至5mm.混凝土配合比应按国家现行标准《普通混凝土配合比设计规程》jgj52的有关规定,根据混凝土等级,耐久性和工作性等需求进行配合比设计,对有特殊要求的混凝土,其配合比设计尚应符合国家现行有关标准的专门规定。检验方法:检查配合比设计资料
首次使用的混凝土配合比应进行开盘鉴定,其工作性应满足设计配合比的要求。开始生产时应至少留置一组标准养护试件,作为验证配合比的依据。
混凝土拌制前,应测定沙石含水率并根据测试结果调整材料用量提出施工配合比。
检查数量,每工作班至少检查一次。
检查方法:检查含水率测试结果和施工配合比通知单 取样:
1.每拌制100盘且不超过10m ³时,取样不得少于1次
2.每工作班拌制的同一配合比混凝土不足100盘时,取样不得少于1次
3.当一次连续浇筑超过100m ³时,同一配合比的混凝土每200m ³取样不得少于1次
4.每一楼层,同一配合比的混凝土,取样不得少于1次
5.每次取样应至少留置一组标准养护试件,同条件养护试件的留置组数应根据实际情况确定。检验方法:检查试件抗渗试验报告 混凝土原材料每盘称量的偏差
水泥、参合料、外加剂 允许偏差±2% 粗细骨料 允许偏差±3% 各种衡器应定期检验,每次使用前应进行零点校核,保持计量准确
当遇雨天或含水率有显著变化时,应增加含水率检测次数,并及时调整水和骨料用量。
检查数量:每工作班抽查不少于一次。检验方法复称。
混凝土运输前,浇筑间歇的全部时间应不超过混凝土的初凝时间,同一施工段的混凝土应连续浇筑,并应在底层混凝土初凝之前将上一层混凝土浇筑完毕。
当底层混凝土初凝后浇筑上一层混凝土时应按施工技术方案中对施工缝的要求进行处理。
检验数量;全楼检查。
检查方法:观察、检查施工记录
混凝土浇筑完毕后,应按施工技术要求方案及时采取有效的养护措施,并应符合下列规定:
1.应在浇筑完毕后的12h以内对混凝土加以覆盖并保湿养护 2.混凝土浇水养护的时间,对采用硅酸盐水泥,普通硅酸盐水泥或矿渣硅酸盐水泥拌制的混凝土,不得少于7d,参用缓凝型外加剂或有抗渗要求的混凝土,不得少于14d 3.浇水次数应能保持混凝土处于湿润状态,混凝土养护水应拌制水相同。
4.采用熟料布覆盖养护的混凝土,其敞露的表面应覆盖严密,并应保持塑料布内有凝结水。
5.当混凝土达到1.2n/mm ²前,不得在其上踩踏或安装模板及支架。
注:当日气温低于5℃时不得浇水。
当使用其他品种水泥时,混凝土的养护时间应根据所采用水泥的技术性能确定。
混凝土表面不便浇水或使用塑料布时,宜涂刷养护剂。对大体积混凝土养护,应根据气候条件,按施工技术方案采用控温措施。
检查数量:全数检查。
检查方法:观察,检查施工记录。
外加剂试验规程 外加剂必试项目篇四
第1题外加剂含水率在试验中有两次放入干燥器的冷却时间分别为多少?
a.10min和15min b.20 min和20min c.30 min和30min d.25 min和15min 答案:c 您的答案:c 题目分数:6 此题得分:6.0 批注:
第2题水泥净浆流动度中将搅拌好的净浆倒入截锥圆模内提起后用秒表计时多久? a.10s b.15s c.20s d.30s 答案:d 您的答案:d 题目分数:6 此题得分:6.0 批注:
第3题水泥胶砂减水率跳桌完毕后测量的直径是哪两个方向上的长度? a.取相互平行方向 b.取相互垂直方向 c.取两个最大直径 d.取两个最小直径 答案:b 您的答案:b 题目分数:6 此题得分:6.0 批注:
第4题在gb/t8077-2012外加剂密度试验规范中20℃的水ρ是多少? a.0.998 b.0.998 c.0.999 d.1.0000 答案:a 您的答案:a 题目分数:6 此题得分:6.0 批注:
第5题外加剂水泥净浆流动度试验中的结果表示要包含哪些内容? a.用水量 b.外加剂掺量
c.水泥净浆搅拌机搅拌时间 d.截锥圆模尺寸
e.水泥强度等级名称、型号及生产厂 答案:a,b,e 您的答案:a,b,e 题目分数:8 此题得分:8.0 批注:
第6题以下关于外加剂水泥胶砂减水率试验哪些说法是正确的有哪些? a.水泥的选择没有特殊要求
b.砂应选择用水泥强度检验用的标准砂
c.掺外加剂胶砂流动度为(180±5)mm时的用水量与基准胶砂流动 度(180±5)mm时的用水量的比值就是减水率的大小
d.基准胶砂流动度达到182mm那么掺外加剂的流动度需符合(182±5)mm的要求
e.搅拌好的胶砂分两次装入模内,第一次装至截锥圆模的三分之二处,第二层胶砂,装至高出截锥圆模20mm 答案:a,b,e 您的答案:a,b,e 题目分数:8 此题得分:8.0 批注:
第7题外加剂含固量试验中液体试样称量质量? a.3.12g b.3.0023g c.5.0023g d.4.1234g e.3.0082g 答案:b,d,e 您的答案:a,e 题目分数:8 此题得分:0.0 批注:
第8题外加剂含水率试验中称量瓶的恒量过程中,称量瓶第一次称量为23.3621g。那么第二次称量质量为多少就符合恒量要求? a.23.3627g b.23.3623g c.23.3624g d.23.3625g e.23.3626g 答案:b,c,d 您的答案:b,c,d 题目分数:8 此题得分:8.0 批注:
第9题在gb/t8077-2012外加剂细度试验中以下说法正确的有哪些?
a.外加剂试样应该充分拌匀并经100~105℃烘干 b.称取烘干试样10g,称准至0.0001g c.条件允许可以采用负压筛析
d.将近筛完时,应一手执筛往复摇动,一手拍打摇动速度约每分钟120次 e.当每分钟通过试验筛质量小于0.005g时停止继续筛析 答案:a,d,e 您的答案:a,d,e 题目分数:8 此题得分:8.0 批注:
第10题混凝土外加剂含固量试验需要将称取的试样放入100℃的烘箱中烘干 答案:正确
您的答案:正确 题目分数:6 此题得分:6.0 批注:
第11题混凝土外加剂含水率试验称取试样约3.0000克置于称量瓶中 答案:错误
您的答案:错误 题目分数:6 此题得分:6.0 批注:
第12题混凝土外加剂密度试验使用的试验方法为比重瓶法 答案:正确
您的答案:正确 题目分数:6 此题得分:6.0 批注:
第13题混凝土外加剂细度试验中天平称量样品需要精确至0.0001 答案:错误
您的答案:错误 题目分数:6 此题得分:6.0 批注:
第14题混凝土外加剂水泥净浆流动度试验中称取试样300g,倒入搅拌锅内。加入推荐掺量的外加剂及87g或105g水,立即搅拌。答案:正确
您的答案:正确 题目分数:6
此题得分:6.0 批注:
第15题
混凝土外加剂水泥胶砂减水率试验中将搅拌好的胶砂装入模套内在跳桌上,以每秒一次的频率连续跳动30次
答案:错误
您的答案:错误 题目分数:6 此题得分:6.0 批注:
试卷总得分: 92.0 试卷总批注:
外加剂试验规程 外加剂必试项目篇五
外加剂试验方法
一、支持性规范
1、试验依据: gb 8076-2008《混凝土外加剂》
gb 8077-2000《混凝土外加剂匀质性试验方法》
gb 50080-2002《普通混凝土拌合物性能试验方法标准》 gb 50081-2002《普通混凝土力学性能试验方法标准》
2、评定依据: gb 8076-2008《混凝土外加剂》
二、检验频率
同厂家、同品种、同编号的掺量小于1%的外加剂每50t为一批,大于1%(含1%)的外加剂每100t为一批,不足50t/100t也按一批计。每一批取样量不少于0.2t水泥所需用的减水剂用量,每批取样充分混匀,分两等分,一份进行试验,一份密封保存6个月。
三、主要仪器及技术参数
1、主要仪器:压力试验机、单卧轴混凝土强制性搅拌机、数显混凝土含气量测定仪、电子台秤、电子称、电子天平、5l容量筒、坍落度筒、钢尺。
四、配合比要求;
水泥:规范要求的标准水泥;(需按gb 8076-2008附录a进行化学指标及物理性能检验,水泥每桶重24.5kg~25.5kg。有效储存期为生产之日期起半年。)
砂:符合gb/t 14684中ⅱ区砂要求,但细度模数为2.6~2.9,含泥量小于1%;
石子:符合gb/t 14685要求的公称粒径为5mm~20mm的碎石或卵石,采用二级配,其中5mm~10mm占40%,10mm~20mm占60%,满足连续级配要求,针片状物质含量小于10%,空隙率小于47%,含泥量小于0.5%。如有争议,以碎石结果为准。
水:符合jgj 63混凝土拌合水的技术要求。配合比:按jgj55进行设计,1)水泥用量:掺高性能减水剂或泵送剂的基准混凝土和受检混凝土的单位水泥用量360kg/m3;掺其他外加剂的基准混凝土和受检混凝土单位水泥用量为330kg/m3。
2)砂率:掺高性能减水剂或泵送剂的基准砼和受检砼的砂率为43%~47%,掺其他外加剂的基准砼和受检砼的砂率为36%~40%;但掺引起剂减水剂或引起剂的受检砼的砂率应比基准砼的砂率底1%~3%,3)外加剂参量:按生产厂家指定参量。4)掺高性能减水剂或泵送剂的基准砼和受检砼的塌落度控制在(210±10)mm,用水量为塌落度在(210±10)mm时的最小用水量,掺其他外加剂的基准砼和受检砼的塌落度控制在(80±10)mm,用水量包括液体外加剂,砂、石材料中所含的水量。
拌和机采用容量60l的单卧轴式强制搅拌机。拌和机的拌合量应不少于20l,不宜大于45l。
出料后,应先在铁板上翻拌至均匀,再进行试验,各种砼试验材料及环境温度均应保持在(20±3)℃。
五、各项试验操作步骤
1、坍落度和坍落度1h经时变化量测定:
每批砼取一个试样,坍落度和坍落度1小时经时变化量均以三次 试验结果的平均值表示。三次试验的最大值和最小值与中间之差有一个超过10mm时,将最大值和最小值一并舍去,取中间值作为该批试验结果,最大值和最小值与中间值之差均超过10mm时,则应重做。坍落度及坍落度1小时经时变化量测定值以mm表示,结果表达修约到5mm。
砼坍落度按照gb/t50080测定。但坍落度为(210±10)mm的砼,分两层装料,每层高度为筒高的一半,每层用插捣棒插捣15次。测定1h后砼坍落度,应将搅拌的砼留下足够一次砼坍落度的试验用量,并装入用湿布擦过的试样筒内,容器加盖,静置1小时(从加水时间开始计算),然后倒出,翻拌均匀,按坍落度测定方法测定坍落度,计算出机时和1小时后的坍落度之差,即为坍落度1h经时变化量。按下式计算:
slsl0sl1h
2、减水率测定
减水率为坍落度基本相同时,基准砼和受检砼单位用水量之差与基准砼单位用水量之比。按下式计算: wrw0w1100 w0减水率以三批试验结果的算术平均值计,精确到1%。若三批试验的最大值或最小值中有一个与中间值之差超过15%时,则把最大值与最小值一并舍去,取中间值作为该组试验的减水率。若两个测值与中间值之差均超过15%时,则该批试验无效,应重做。
3、泌水率比
先用湿布润湿容积为5l的带盖筒,将砼拌合物一次装入,在震动台上震动20s然后用抹刀轻轻抹平,加盖以防水分蒸发。试样表面应比筒口底约20mm。自抹面开始计时,在前60min,每隔10min用吸液管吸出泌水一次,以后每隔20min吸水一次,直至连续3次无泌水为止。每次吸水前5min,应将筒底一侧垫高约20mm,是筒倾斜,以便于吸水。吸水后,将筒轻轻放平盖好。将每次吸出的水都注入带塞量筒。最后计算出总的泌水量,精确至1g,基准砼和受检砼按相同方法测定泌水率,按下式计算泌水率: bvw100
(w/g)gw泌水率比按下式计算,应精确至1%: rbbt100 bc试验时,从每批混凝土拌合物中取一个试样,泌水率取三个试样的算术平均值,精确到0.1%,若三个试样的最大值或最小值有一个与中间值之差超过15%时,则把最大值与最小值一并舍去,取中间值作为该组试验的泌水率,如果最大值和最小值与中间值之差均大于中间值的15%时,则应重做。
4、含气量测定和含气量1h经时变化量测定
按gb50080用气水混合式含气量测定仪,按仪器说明进行操作,但拌合物应一次装满并稍高于容器,用振动台振实15~20s。当要求测定含气量1h经时变化量时,应将搅拌的砼留够一次含气量试验的数量。并装入用湿布擦过的试样筒内,容器加盖,静置1小时(从加水时间开始计算),然后倒出,翻拌均匀,再按照含气量测定方法测定含气量。计算出机时和1h之后的含气量差值,即得到含气量的经时变化量。按下式计算:
aa0a1h
5、凝结时间差测定
凝结时间采用贯入阻力仪测定,仪器精度10n,将砼拌合物用5mm圆孔筛筛出砂浆,拌匀后装入上口内径为160mm,下口内径为150mm,净高150mm的刚性不渗水的金属圆筒,试样表面应略低于筒口约10mm,用振动台振实,约3~5s,置于18~22℃的环境中,容器加盖。一般基准砼在成型后3h~4h,掺早强剂的在成型后1~2h掺缓凝剂的在成型后4~6h开始测定,以后每隔0.5h或1h测定一次,但在临近初、终凝时,可以缩短测定间隔时间。每次测点应避开前一测孔,其净距为试针直径的两倍,但至少不小于15mm,试针与容器边缘之距离不小于25mm。测定初凝时间用截面积为100mm2的试针,测定终凝时间用20mm2的试针。测试时,将砂浆试样筒置于贯入阻力仪上,测针端部与砂浆便面接触,然后再8~12s内均匀的使测针贯入砂浆23~27mm深度。记录贯入阻力,精确至10n,记录测量时间,精确至1min。贯入阻力按下式计算,精确到0.1mpa。
p r
a根据计算结果,以贯入阻力值为纵坐标,测试试件为横坐标,绘制贯入阻力值与时间关系曲线,求出贯入阻力值达3.5 mpa时,对应的时间作为初凝时间,贯入阻力达28 mpa时,对应的时间作为终凝时间。从水泥与水接触时开始计算凝结时间。
试验时,每批砼拌合物取一个试样,凝结时间取三个试样的平均值。若三个批试验的最大值或最小值之中有一个与中间值之差超过30min,把最大值与最小值一并舍去,取中间值作为该组试验的凝结时间,若两测值与中间值之差均超过30min,该组试验结果无效,则应重做。凝结时间以min表示,并修约到5min。基准砼与受检砼按相同方法测试,凝结试件差按下式计算:
ttttc
6、抗压强度比试验
受检砼和基准砼的抗压强度按gb/t50081进行试验和计算,试件制作时,用振动台震动15~20s,试验预养温度为17~23℃,试验结果以三批试验测值的平均值表示,若三批试验中有一批的最大值或最小值与中间值的差值超过中间值的15%,则把最大值和最小值一并舍去,取中间值作为该批的试验结果,如有两批测值与中间值的差均超过中间值的15%,则试验结果无效,应重做。抗压强度比以掺外加剂砼与基准砼同龄期抗压强度之比表示,按下式计算:
rfftfc
7、水泥净浆流动度试验方法
在水泥净浆搅拌机中,加入一定量的水泥、外加剂和水进行搅拌,将拌好的净浆注入截锥圆模内,提起截锥圆模,测定水泥净浆在玻璃平面上自由流淌的最大直径。1)仪器
水泥净浆搅拌机; 截锥圆模:上口直径36mm,下口直径60mm,高度为60mm,内壁光滑无接缝的金属制品;玻璃板(400×400×5mm);秒表;钢直尺,(300mm);刮刀;药物天平,(称量100g,分度值0.1g);药物天平(称量1000g,分度值1g)。
2)试验步骤
①将玻璃板放置在水平位置,用湿布将玻璃板,截锥圆模,搅拌器及搅拌锅均匀擦过,使其表面湿而不带水渍。将截锥圆模放在玻璃板的中央,并用湿布覆盖待用。
②称取水泥300g,倒入搅拌锅内,加入推荐掺量的外加剂及87g或105g水,搅拌3min。
③将拌好的净浆迅速注入截锥圆模内,用刮刀刮平,将截锥圆模按垂直方面提起,同时开启秒表计时,任水泥净浆在玻璃板上流动,至30s,用直尺量取流淌部分互相垂直的两个方向的最大直径,取平均值作为水泥净浆流动度。3)结果表示
①表达净浆流动度时,需注明用水量,所用水泥的标号、名称、型号及生产厂和外加剂掺量。
②试样数量不应少于三个,结果取平均值,误差为±5mm。
3>
一键复制