总结是汲取经验教训,发现问题并提出解决方案的重要手段。此外要注意总结的整体框架和篇章结构,使文章有条不紊地展开。分享了一些优秀的总结范文,希望可以激发大家写作的灵感。
高一数学知识点总结图篇一
1.下列几种关于投影的说法不正确的是()。
a.平行投影的投影线是互相平行的。
b.中心投影的投影线是互相垂直的。
c.线段上的点在中心投影下仍然在线段上。
d.平行的直线在中心投影中不平行。
2.根据下列对于几何结构特征的描述,说出几何体的名称:
(1)由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形;。
(3)一个等腰直角三角形绕着底边上所在的直线旋转360度形成的封闭曲面所围成的图形.
高一数学知识点总结图篇二
以下知识点需要我们去理解,记忆。1、数学所说的直线是无限延伸的,没有起点,也没有终点。
2、数学所说的平面是无限延伸的,没有起始线,也没有终点线。
3、公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
4、过不在同一直线上的三点,有且只有一个平面。
5、如果两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。
6、平行于同一条直线的两条直线平行。
7、直线在平面内,因为直线上有无数多个点,平面上也有无数多个点,因此用子集的符号表示直线在平面内。
8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。
9、做位置关系的题目,可以借助实物,直观理解。
一、直线与方程考试内容及考试要求。
考试内容:
1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;。
2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;。
考试要求:
1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直。
线的方程判断两条直线的位置关系。
高一数学知识点总结图篇三
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为r.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质。
【函数的应用】。
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点.
3、函数零点的求法:
求函数的零点:
1(代数法)求方程的实数根;。
2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
二次函数.
1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一数学知识点总结图篇四
棱锥的的性质:
(1)侧棱交于一点。侧面都是三角形
正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:
(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形
esp:
a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。
高一数学知识点总结图篇五
每学期结束后都会反思自己,教学上的,工作上的。这几天要二级转正了,又要上缴这些资料,整理一下。这学期一起带高一的四个同事,都是很优秀的,两个是我以前的物理老师,一个是书记,另外一个是科组里面解题最厉害,也是我努力的目标,我的师兄,虽然大我五岁,看起来还是跟高中生没有多大差别。可能是跟这些高手的缘故,这学期备课我是相当的认真,并没有因为去年上过而随便应付上课。
下面是我去年写的教学反思:
1、课堂纪律要求严格,决不允许任何人随意说话干扰他人。这一点虽然简单但我认为很重要,是老师能上好课、学生能听好课的前提,总的来说,这一点我做得还不错,几个“活跃分子”都反映物理老师厉害,不敢随便说话。
2、讲课时随时注意学生的反应,一旦发现学生有听不懂的,尽量及时停下来听听学生的反应。
3、尽量给学生最具条理性的笔记,便于那些学习能力较差的同学回去复习,有针对性的记忆。
4、注重“情景”教学。高中物理有很多典型情景,在教学中我不断强化它们,对于一些典型的复杂情景,我通常将其分解成简单情景,提前渗透,逐步加深。每节课我说得最多的一个词就是“情景”,每讲一道题,我都会提醒学生“见过这样的情景吗?”“你能画出情景图吗?”“注意想象和理解这个情景”。
5、重视基本概念和基本规律的教学。首先重视概念和规律的建立过程,使学生知道它们的由来;对每一个概念要弄清它的来龙去脉。在讲授物理规律时不仅要让学生掌握物理规律的表达形式,而且更要明确公式中各物理量的意义和单位,规律的适用条件及注意事项。了解概念、规律之间的区别与联系,如:运动学中速度的变化量和变化率,力与速度、加速度的关系,动能定理和机械能守恒定律的关系,通过联系、对比,真正理解其中的道理。通过概念的形成、规律的得出、模型的建立,培养学生的思维能力以及科学的语言表达能力。
6、重视物理思想的建立与物理方法的训练。物理思想的建立与物理方法训练的重要途径是讲解物理习题。讲解习题时把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,从高一一开始就训练学生作示意图的能力,如:运动学习题要求学生画运动过程示意图,动力学习题要求学生画物体受力与运动过程示意图,并且要求学生审题时一边读题一边画图,养成习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力。
这一学期来,也遇到很多困难。我反思在教学中存在的问题。首先,落实不到位。本来应该当时落实没能及时落实。再有就是教学过于死板,平时让学生参与的机会较少,总是满足于自己一言堂。不给学生机会出错,而学生从自己的错误中得到的认识会更加深刻。再者由于课时有限,没有足够的课堂练习时间。
高一数学知识点总结图篇六
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
3、函数零点的求法:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
4、二次函数的零点:
(1)△0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
(3)△0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
猜你感兴趣:
1.高一化学必修一重点知识点归纳
2.高一化学必修一重要知识点整理
3.高一化学必修一重点知识点
4.高中化学必修一必备知识点总结
5.人教版高一英语必修一知识点归纳
高一数学知识点总结图篇七
首先,新高一同学要明确的是:高一数学是高中数学的重点基础。刚进入高一,有些学生还不是很适应,如果直接学习高考技巧仿佛是“没学好走就想跑”。任何的技巧都是建立在牢牢的基础知识之上,因此建议高一的学生多抓基础,多看课本。
在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。
高一数学的知识掌握较多,高一试题约占高考得分的70%,一学年要学五本书,只要把高一的数学掌握牢靠,高二,高三则只是对高一的复习与补充,所以进入高中后,要尽快适应新环境,上课认真听,多做笔记,一定会学好数学。
因此,新高一同学应该在熟记概念的基础上,多做练习,稳扎稳打,只有这样,才能学好数学。
预习是学好数学的必要前提,可谓是“火烧赤壁”所需“东风”.总的来说,预习可以分为以下2步。
1.预习即将学习的章节的课本知识。在预习课本的过程中,要将课本中的定义、定理记熟,做到活学活用。有是要仔细做课本上的例题以及课后练习,这些基础性的东西往往是最重要的。
2.自觉完成自学稿。自学稿是新课改以来欢迎的学习方式!首先应将自学稿上的《预习检测》部分写完,然后想后看题。在刚开始,可能会有一些不会做,记住不要苦心去钻研,那样往往会事倍功半!
听讲是学好数学的重要环节。可以这么说,不听讲,就不会有好成绩。
1.在上课时,认真听老师讲课,积极发言。在遇到不懂的问题时,做上标记,课后及时的向老师请教!
2.记录往往是一个细小的环节。注意老师重复的语句,以及写在黑板上的大量文字(数学老师一般不多写字),及时地用一个小本记录下来,这样日积月累,会形成一个知识小册。
高一数学知识点总结图篇八
高一新生的学习主动性太差是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。
合理规划步步为营。
高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的微量调整。

一键复制