作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
人教版初一数学教案设计人教版初一数学第一章教案篇一
教学目标:
1、通过具体生活实际情景,体验“改商”的过程。
2、能正确计算除数是两位数的除法,并能解决生活中的实际问题。
3、在计算中增强学生用多种策略解决问题的意识,培养学生观察、比较及发散思维的能力。
教学重、难点:
掌握“改商”的方法。
教学准备:主题图。
教学方法:情境教学法。
教学过程:
一、创设情景:
某学校要秋游啦,同学们纷纷在做准备,四(1)班有41个学生,老师想让同学们戴上红色的帽子,这样好识别自己班上的学生。超市里有8元、9元、10元的.红色帽子,而班费只有400元,请你帮老师算算,可以买那种帽子?
(学生以小组为单位讨论购买方案)
二、建立模型。
1、同学们都准备好了,来到了大操场,电脑出示书中的情境图,学生根据情景图,提出有关除法的数学问题。
(1)说一说了解了哪些已知条件。
(2) 学生独立试做,然后以小组合作的方式进行探究。
讨论估计试商。
272÷34= 先估估大概需要几辆车
(3)全班交流,找到解决问题的关键。明确把除数“34”看作“30”来试商,初商“9”大了,改商“8”的原因。
3、启发学生想一想,怎样试商?会发现什么技巧。
(学生自由发言,或者小组内互相说一说。什么时候商会小?)
4、由学生发现提出并解答:积大了说明什么?为什么会大呢?
学生用自己的话说一说怎样确定商?
5、继续完成学生自己提出的问题,在解题的过程中由学生发现提出并解答:积小了说明什么?为什么会小呢?
6、引导学生先用估算的方法,然后再进行计算。
三、知识应用及拓展。
1、理解改商。
2、完成“试一试”
第1题:让学生说一说商的大小情况。
第2题:认真观察,小组内说一说,解决五年级学生如果都坐大客车,需要几辆?
3、完成“练一练”,可以适当扩充。
四、小结本课
五、布置作业
教学反思
这是在上一节课的基础上,体验“调商”的过程。在试商的过程中,学生回把除数看作整十数试商,但在具体的计算时商不是大了就是小了,教学中我重点让学生讨论理解“商为什么大了或小了”然后在掌握“调商”方法的基础上,灵活试商。
人教版初一数学教案设计人教版初一数学第一章教案篇二
一、圆柱体积
1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米
(2)底面半径是3厘米,高是5厘米。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。)
二、圆锥体积
1、选择题。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )
① a立方米 ② 3a立方米 ③ 9立方米
① 6立方米 ② 3立方米 ③ 2立方米
2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍 ………( )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………( )
………( )
3、填空
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是( )立方厘米,圆锥的体积是( )立方厘米。
4、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。
(2)底面直径6分米,高8厘米。
(3)底面周长31.4厘米,高12厘米。
参考答案:
一、圆柱体积
1、求下面各圆柱的体积。
(1)底面积0.6平方米,高0.5米 0.6 × 0.5 = 0.3(立方米)
(2)底面半径是3厘米,高是5厘米。 3.14 ×3 × 5 = 141.3(立方厘米)
(3)底面直径是8米,高是10米。 3.14 ×(8÷2)×10 = 502.4(立方米)
(4)底面周长是25.12分米,高是2分米。
3.14 ×(25.12÷3.14÷2) × 2 = 100.48(立方分米)
底面积相等的两个圆柱,第一个圆柱的高是第二个圆柱的4/7,第一个圆柱的体积也就是是第二个圆柱的4/7。
24 ÷ 4/7 – 24 = 18(立方厘米)
答:第二个圆柱的的体积比第一个圆柱多18立方厘米。
3.14 ×(0.8÷2) × 2 × 60 = 60.288(立方米)
答:那么1分钟流过的水有60.288立方米。
牙膏体积:1厘米 = 10毫米
3.14 ×(5÷2) × 10 × 36 = 7065(立方毫米)
7065 ÷ [3.14 ×(6÷2) × 10] = 25(次)
答:这样,这一支牙膏只能用25次。
5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。)
1.5米 = 150厘米
3.14 ×(4÷2) × 150 × 7.8 = 14695.2(克)= 14.6952(千克)≈15(千克)
答:截下的这段钢材重15千克。
3.14 ×(6÷2) × 6 = 169.56(立方分米)
答:这个圆柱的体积是169.56立方分米。
底面周长: 94.2÷3 = 31.4厘米
3.14 ×(31.4÷3.14÷2) × 3 = 235.5(立方厘米)
答:这个圆柱体积减少235.5立方厘米。
二、圆锥体积
1、选择题。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( ② )
① a立方米 ② 3a立方米 ③ 9立方米
① 6立方米 ② 3立方米 ③ 2立方米
2、判断对错。
(1)圆柱的体积相当于圆锥体积的3倍 ………( × )
(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1 ………( √ )
………( × )
3、填空
(1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是( 6 )立方厘米。
(2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是(54)立方厘米。
(3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是( 108 )立方厘米,圆锥的体积是( 36 )立方厘米。
4、求下列圆锥体的体积。
(1)底面半径4厘米,高6厘米。 ×3.14 ×4 ×6 = 100.48(立方厘米)
(2)底面直径6分米,高8厘米。 ×3.14×(60÷2)×8 = 7536(立方厘米)
(3)底面周长31.4厘米,高12厘米。
×3.14×(31.4÷3.14÷2)×12 = 314(立方厘米)
×3.14 ×2 ×1.5×1.8 = 11.304(吨)
答:这堆沙约重11.304吨。
×3.14×(12.56÷3.14÷2)×1.2 ×750 = 3768(千克)
答:这堆小麦重3768千克。
5 × 4 × 3 = 60(立方厘米)
60 × 3 ÷ 6 = 30(平方厘米)
答:这个圆锥形容器的底面积是30平方厘米
人教版初一数学教案设计人教版初一数学第一章教案篇三
解决问题的策略
学习目标
1、让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。
2、在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3、进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心。
考点分析
转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识,经验。
典型例题
例1、(运用转化的策略巧算周长)求下面图形的周长。(单位:厘米)
分析与解:求这个图形的周长,就是求围成这个图形的所有线段的长度和。图中有的线段的长度不知道,可以将其中的4条线段进行平移(如下图),平移之后形成一个长方形,长方形的周长和原来图形的周长是相等的。因此求原来图形周长的问题就转化成了求下图这个长方形的周长。
解答:(20 + 7 +3)× 2 = 60(厘米)
点评:通过相等面积的代换转化,把一些不规则的图形转化为规则的、容易判断的图形,这就是转化的优点,在解答时要灵活运用。
例2、(将复杂的图形转化成简单的图形后计算面积)
图1 图2
分析与解:求草地部分的面积,可以用大长方形的面积减去两条道路的面积,但要考虑两条道路的重叠部分,因此计算比较复杂。可以将图1转化成图2,两条道路转化到了长方形草地的边上,很明显,图2草地部分(阴影部分)的面积和图1相等,现在求草地的面积转化成了求长方形的面积,计算比较简单。
解答:(16 - 2 )× (10 - 2) = 112(平方米)
答:草地部分的面积是112平方米。
即周长是(15 + 9)× 2 = 48(厘米)。
分析与解:如下图,将长2厘米的线段移到上面,转化成了一个长方形,但还多两条3厘米的线段。
正确解答:(15 + 9)× 2 + 3 × 2 = 54(厘米)
例4、(已知两个量之间的分率关系与它们的和,求这两个量)
分析与解:这类有关分数的实际问题可以用方程来解答。需要注意的是根据“购进的科技书的册数是故事书的 ”故事书是单位“1”的量,要设故事书有x册,而不能直接设科技书有x册。
解答:方法1:设故事书有x册,科技书有 x册。
x + x = 1500
x = 1500
答:购进科技书450册。
很显然,上面解答过程比较复杂。可以这样想:把总数看作单位“1”,根据“购进的科技书的册数是故事书的 ”,可以把故事书看成7份,科技书有这样的3份,一共有10份,科技书占总数的 ;可以看出科技书和故事书的比是3 :7,根据按比例分配问题的解法,可以知道科技书占总数的 。
方法2:3÷(3 + 7)= 1500 × = 450 (册)
答:购进科技书450册。
例5、(辨析)红花的朵数比蓝花多 ,蓝花的朵数就比红花少 。
蓝花:
红花:
分析与解:如图,根据“红花的朵数比蓝花多 ”,蓝花是单位“1”的量,平均分成7份,红花有这样的9份。反过来,把红花看作单位“1”,红花平均分成了9份,蓝花相当于这样的7份,蓝花的朵数比红花少 。
正确解答:红花的朵数比蓝花多 ,蓝花的朵数就比红花少 。
读的页数和未读页数的和没有变,把这本书的总页数看作单位“1”。“已读的页数是未读页数的 ”,可以转化为“已读的页数是这本书总页数的 ”;再读30页后“已读的页数是未读页数的 ”,可以转化为“已读的页数是这本书总页数的 ”。
解答: 3 ÷ (3 + 2)=
7 ÷ (7 + 3)=
30 ÷ ( - )= 300(页)
答:这本书共300页。
分析与解:本题中女生人数和全班人数均发生了变化,不变的量是男生的人数,因此把男生的人数看作单位“1”。“女生占全班人数的 ”,可以转化为“女生人数是男生人数的 ”;转出若干名女生后,“女生占全班人数的 ”,可以转化为“女生人数是男生人数的 ”。
解答:4 ÷ (9 - 4)=
2 ÷ (5 - 2)=
4 ÷ ( - )= 30(人)┈┈ 男生人数
30 × = 20(人) ┈┈ 现有女生人数
答:现在有女生20人。
点评:分率的转化过程通常要借助于份数,可以先分析出单位“1”的份数,再根据关系分析出另外的量的份数,再结合具体的条件进行分率的转化。
人教版初一数学教案设计人教版初一数学第一章教案篇四
教学内容:
义务教育课程标准数学(人教版)三年级上册p28例2和做一做,思考题,练习七1,2题
教学目标:
1、探索并掌握三位数减法的验算方法,能正确验算。
2、引导学生感受验算方法的多样性。
3、能结合具体情况提出问题,并能运用所学知识解决一些简单的实际问题。
教学重点、难点:
探索并掌握三位数减法的验算方法能正确验算。
教学过程:
一、准备练习
1、独立写算式
2、竖式计算减法的方法
二、探究新知
1、创设情景,提出问题
出示教材第28页情景图
你从图中发现什么?
2、解决问题,学会验算
①独立思考
②列竖式计算
③归纳
三、教学效果测评
1、第28页“做一做”
2、练习七第1、2题
人教版初一数学教案设计人教版初一数学第一章教案篇五
每个数学老师都应该让学生学到知识,爱上学习,掌握学习的方法,并终身受益。每个数学老师在教学之前都应该写数学教案。你是否在找正准备撰写“三下人教数学教案设计理念”,下面小编收集了相关的素材,供大家写文参考!
一、教学目标:
1、理解极差的定义,知道极差是用来反映数据波动范围的一个量
2、会求一组数据的极差
二、重点、难点和难点的突破方法
1、重点:会求一组数据的极差
2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析
教材p151引例的意图
(1)、主要目的是用来引入极差概念的
(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量
(3)、交待了求一组数据极差的方法。
四、课堂引入:
引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析
本节课在教材中没有相应的例题,教材p152习题分析
问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计知识首先应回忆复习已学知识。问题3答案并不,合理即可。
六、随堂练习:
a.平均数 b.中位数 c.众数 d.极差
4、一组数据x 、x …x 的极差是8,则另一组数据2x +1、2x +1…,2x +1的极差是( )
a. 8 b.16 c.9 d.17
答案:1. 497、3850 2. 4 3. d 4.b
七、课后练习:
1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )
a. 0.4 b.16 c.0.2 d.无法确定
在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )
a. 87 b. 83 c. 85 d无法确定
3、已知一组数据2.1、1.9、1.8、x、2.2的平均数为2,则极差是 。
4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。
5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)
计算这组数据的极差,这个极差说明什么问题?
将数据适当分组,做出频率分布表和频数分布直方图。
20.2.2 方差(第一课时)
一. 教学目标:
1. 了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
二. 重点、难点和难点的突破方法:
1. 重点:方差产生的必要性和应用方差公式解决实际问题。
2. 难点:理解方差公式
3. 难点的突破方法:
方差公式:s = [( - ) +( - ) +…+( - ) ]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节 教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三. 例习题的意图分析:
1. 教材p125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2. 教材p154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五. 例题的分析:
教材p154例1在分析过程中应抓住以下几点:
1. 题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2. 在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3. 方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六. 随堂练习:
1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
测试次数 1 2 3 4 5
段巍 13 14 13 12 13
金志强 10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
七. 课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数相同,但s s ,所以确定 去参加比赛。
3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
4. 小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
4. =10.9、s =0.02;
=10.9、s =0.008
选择小兵参加比赛。
教学过程
一、复习等腰三角形的判定与性质
二、新授:
2.等边三角形的判定:
3.由学生解答课本148页的例子;
∠abc=120o,求证:ab=2bc
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点: 理解分式的基本性质.
2.难点: 灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法
三、例、习题的意图分析
四、课堂引入
1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?
五、例题讲解
p7例2.填空:
p11例3.约分:
p11例4.通分:
, , , , 。
解: = , = , = , = , = 。
六、随堂练习
1.填空:
(1) = (2) =
(3) = (4) =
2.约分:
(1) (2) (3) (4)
3.通分:
(1) 和 (2) 和
(3) 和 (4) 和
4.不改变分式的值,使下列分式的分子和分母都不含“-”号.
(1) (2) (3) (4)
七、课后练习
1.判断下列约分是否正确:
(1) = (2) =
(3) =0
2.通分:
(1) 和 (2) 和
3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.
(1) (2)
八、答案:
六、1.(1)2x (2) 4b (3) bn+n (4)x+y
2.(1) (2) (3) (4)-2(x-y)2
3.通分:
(1) = , =
(2) = , =
(3) = =
(4) = =
4.(1) (2) (3) (4)
人教版初一数学教案设计人教版初一数学第一章教案篇六
比例尺、面积变化、确定位置
学习目标
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。会求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。
5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察能力、识图能力和有条理的进行表达的能力。发展空间观念。
6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析
1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 = ,比例尺有两种形式:数值比例尺和线段比例尺。
3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之一( )后,放大(或缩小)后与放大(或缩小)前图形的面积比是n:1(或1:n)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题:
例1、(认识比例尺)
分析与解:图上距离和实际距离的单位不同,先要统一成相同的单位,写出比后再化简。
40米 = 4000厘米 3厘米 = 0.03米
= = =
图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离 : 实际距离 = 比例尺或 = 比例尺
图上距离和实际距离的比是1:1000,这幅图的比例尺是1:1000,也可写成 ,仍读作1比1000。
点评:求一幅地图的比例尺是一种比较简单的题目。做的时候唯一要注意的就是末尾0的问题:一是米、千米化成厘米的时候要在米、千米那个数的末尾加上2、5个0;二是在求比例尺的结果时要注意0的个数。多数一数、想一想,是不会有错的。
例2、(对比例尺的理解及比例尺的两种表示方法)
分析与解:比例尺1:1000表示图上距离是实际距离的 ,实际距离是图上距离的1000倍,图上1厘米的距离代表实际距离1000厘米,即10米。
0 10 20 30米
,这是线段比例尺,它表示图上1厘米的距离代表实际距离10米。
错误解法:4厘米 = 40毫米 2 : 40 = 1 : 20
思路分析:无论什么样的图纸,比例尺始终是图上距离与实际距离的比,根据比例尺的定义,用“图上距离 : 实际距离 = 比例尺”去求。
正确解答:4厘米 = 40毫米 40 : 2 = 20 : 1
点评:比例尺通常情况下都应该写成前项是1的比。但比例尺的作用除了把实际距离缩小,还可以把实际距离扩大,这样比例尺的前项就比后项大,这时后项通常化成1。在解答时,只要坚持好“图上距离 : 实际距离 = 比例尺”,图上距离在前就可以了。
例4、(根据比例尺求图上距离或实际距离)
分析与解:方法1:比例尺是 ,说明实际距离是图上距离的60000倍。
2.5×60000 = 150000(厘米)
150000(厘米)= 1500米
方法2:比例尺是 ,也就是图上1厘米的距离代表实际距离60000厘米,即600米。
2.5×600 = 1500(米)
方法3:根据 = 比例尺,可以用“图上距离 ÷ 比例尺”或“解比例”的方法来求实际距离。
解:设两地的实际距离是ⅹ厘米。
=
1ⅹ = 2.5 × 60000
ⅹ = 150000
150000(厘米)= 1500米
答:两地的实际距离是1500厘米。
例5、(平面图形按照一定的比放大后,面积扩大了比的平方倍)
下面的大长方形是由一个小长方形按比例放大后得到的图形。分别量出它们的长和宽,算算大长方形与小长方形面积的比是几比几。
分析与解:量得小长方形的长是2.5厘米,宽是1厘米;大长方形的长是7.5厘米,宽是3厘米。大长方形与小长方形长的比是7.5 : 2.5 = 3 : 1,宽的比是3 : 1。
= = × = 9 : 1 = 3 : 1
答:大长方形与小长方形面积的比是9 : 1。
例6、(认识北偏东(西)若干度、南偏东(西)若干度等方向)
n
商场 北
45
60 书店
0 3 6 9千米
汽车
分析与解:从图上可以看出,以汽车为中心,书店在汽车的东北方向,商场在汽车的西北方向。
怎样才能更准确地表示它们的位置呢?
东北方向也叫做北偏东方向,书店在汽车的北偏东60方向。
西北方向也叫做北偏西方向,商场在汽车的北偏西45方向。
答:书店在汽车的北偏东60方向,商场在汽车的北偏西45方向。
例7、(知道了物体的方向和距离,才能确定物体的具体位置)
分析与解:从图中量得书店和商场到汽车的图上距离分别是1.2厘米和2.3厘米,根据比例尺,图上距离1厘米代表实际距离3千米,分别算出实际距离。
1.2 × 3 = 3.6(千米)┄┄┄书店
2.3 × 3 = 6.9(千米)┄┄┄商场
答:书店在汽车北偏东60方向的3.6千米处,商场在汽车北偏西45方向的6.9千米处。
点评:只有在方向词的后面添上角的度数,才能准确描述物体所在的位置。确定方向时,一定要先确定好南或北,再看是偏东还是偏西,如果图中没有画线,要先连线。算实际距离就根据前面比例尺的相关知识去求。
例8、(辨析)书店在汽车的北偏东60方向,表示汽车也在书店的北偏东60方向。
分析与解:书店在汽车的北偏东60方向,是以汽车为中心,由北向东旋转60;而以书店为中心,汽车在书店的西南方向,即南偏西60方向。
书店在汽车的北偏东60方向,表示汽车在书店的南偏西60方向。
例9、(根据给定的方向和距离,有序地确定物体的具体位置)
海面上有一座灯塔,灯塔北偏西30方向30千米处是凤凰岛。
n
北
w西 东e
灯塔
0 10 20 30千米
南
s
你能在图上指出凤凰岛大约在什么位置吗?
分析与解:(1)先确定北偏西30的方向,画一条射线。
n
30
灯塔
(2)再算出灯塔到凤凰岛的图上距离是多少厘米。
30 ÷ 10 = 3(厘米)
凤凰岛 ● n
30
灯塔
点评:在表示凤凰岛的具体位置时,先要画出表示方向的射线,再确定灯塔到凤凰岛的图上距离。且在画表示方向的射线时,应从表示灯塔的点开始画起,并注意正确摆好量角器。
例10、(用方向和距离描述简单的行走路线)
下图是某市旅游1号车行驶的线路图,请根据线路图填空。
(1)旅游1号车从起点站出发,向( )行驶到达青水公园,再向( )偏( )( )的方向行( )千米到达抗战纪念碑。
(2)由绿博园向南偏( )( )的方向行( )千米到达购物中心,再向北偏( )( )的方向行( )千米到达人民公园。
分析与解:先找准方向,再说出具体的路程。(1)旅游1号车从起点站出发,向( 东 )行驶到达青水公园,再向( 北 )偏(东)(40)的方向行(1.8 )千米到达抗战纪念碑。
(2)由绿博园向南偏(东)(60)的方向行(1.7)千米到达购物中心,再向北偏( 东 )
(70)的方向行(1.5)千米到达人民公园。
点评:在进行描述的时候,一定要先说清楚方向再说路程。说方向的时候为了说清楚,通常情况下不用东北、西北、东南、西南等说法,而用南偏东、南偏西、北偏东、北偏西多少度的说法更为准确。
小学数学总复习专题讲解及训练(七)
模拟试题
1、说出下面各比例尺表示的意思。
1∶40000
2、判断:
这幅图的比例尺为1︰2。 ┈┈┈┈ ( )
②某机器零件设计图纸所用的比例尺为1︰1,
说明了该零件的实际长度与图上是一样的 ┈┈┈┈ ( )
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( )
3、选择:
①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离( )实际距离。
②学校操场长100米,宽60米,在练习本上画图,选用( )作比例尺较合适。
5、 一种精密零件,画在图上是12厘米,而实际的长度是3毫米。求这幅图的比例尺。
8、 一幅地图的线段比例尺是:
0 40 80 120 160千米,甲乙两城在
9、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
(2)写出图上面积和实际面积的比。并与比例尺进行比较。
10、下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。
电影院
●30
● ●
40 广场 公园
● 商店
(1)公园在广场的东面( )千米处。
(2)电影院在广场的( )偏( )( )方向( )千米处。
(3)商店在广场的( )。
参考答案:
1、说出下面各比例尺表示的意思。
1∶40000 表示图上距离是实际距离的 ,实际距离是图上距离的40000倍,图上1厘米的距离代表实际距离40000厘米,即400米。
表示图上1厘米的距离代表实际距离200千米。
2、判断:
①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。 ┈┈┈┈ ( × )
②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ┈┈┈┈ ( √ )
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( × )
3、选择:
①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离( a )实际距离。
②学校操场长100米,宽60米,在练习本上画图,选用( b )作比例尺较合适。
4、一幅地图的线段比例尺是 ,这幅图上3厘米表示实际距离多少千米?这幅图上3厘米表示实际距离6千米。
5、 一种精密零件,画在图上是12厘米,而实际的长度是3毫米。求这幅图的比例尺。
图上距离 : 实际距离 = 比例尺
12厘米 = 120毫米 120 : 3 = 40 : 1
答:这幅图的比例尺是40 : 1。
长:120米 = 12000厘米 12000 × = 3厘米
宽:80米 = 8000厘米 8000 × = 2厘米
答:长应画3厘米,宽应画2厘米。
5 ÷ = 1000000厘米 = 10千米
答:两城实际相距10千米。
8、 一幅地图的线段比例尺是:
0 40 80 120 160千米,甲乙两城在
18 × 40 = 720千米
答:两城间的实际距离是720千米,在这幅地图上两城之间的距离是16.5厘米。
9、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
图上面积:3 × 2 = 6平方厘米
答:这间教室的图上面积6平方厘米,实际面积是150平方米。
(2)写出图上面积和实际面积的比。并与比例尺进行比较。
与比例尺进行比较1 : 250000 = (1:500)
10、下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。
电影院
●30
● ●
40 广场 公园
● 商店
(1)公园在广场的东面( 0.75 )千米处。
(2)电影院在广场的( 北 )偏( 东 )( 60 )方向( 0.75 )千米处。
人教版初一数学教案设计人教版初一数学第一章教案篇七
本课内容教学之前,学生已经比较熟练地掌握了表内乘法,并学会了乘法竖式的写法,这些都为学习本课内容作了知识上的铺垫。两位数乘一位数的乘法是以后学习乘、除法的基础,也是本单元中重要的学习内容。
这部分内容先教学一位数乘几十的口算,为学习一位数乘两位数作好算理和方法上的准备,再教学两位数乘一位数的不进位笔算。一位数乘几十是一位数乘两位数中最容易的,也是最基础的。教材用图画形式呈现的实际问题能很清楚地显示出求3个20是多少?引起学生对乘法的回忆。列出算式203后,形象直观的问题情境又能让每名学生都有自己的算法,然后组织学生交流算法,使采用连加或形象计算的学生学会比较抽象地思考,从而让学生经历数学化的过程。在试一试中,继续口算8头大象能运多少根,把一位数乘几十的积扩展到几百几十,再次引导学生利用表内乘法联想一位数乘几十的积。一位数乘两位数(不进位)的教学也充分依-情境图启发学生思考。教材先安排学生自己想口算方法,在此基础上再介绍笔算方法,这样安排,便于学生由口算方法联想到要把乘数分别与被乘数每位上的数相乘,然后相加,这就有利于学生理解笔算的方法。接着,教材简化了竖式笔算的中间过程,得出笔算的竖式的一般写法,使学生明确一位数乘两位数乘的顺序和每一步积的定位。
教学目标:
1、使学生经历探索一位数乘两位数算法的过程,理解一位数乘两位数的算理,并掌握计算方法。
2、初步学会一位数乘几十的口算和一位数乘两位数的笔算。
3、使学生经历与他人交流算法的过程,培养学生自主探索、合作交流的良好学习习惯。
教学重点:学会一位数乘几十的口算和一位数乘两位数的笔算
教学难点:理解一位数乘两位数的算理
教学准备:电脑、课件
设计思路:
1、 让学生在现实的情境中感悟算法。
标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础上,为学生提供现实的、有意义的、富有挑战性的学习材料,通过教学内容引起学生主动地观察、猜测、验证、推理与交流等数学活动。本节课中,通过创设森林王国的情境,先引出一系列实际问题,然后依-森林王国的情境图来启发学生思考多种算法,并通过讨论交流,结合情境图懂得算理,从而使学生在现实的情境中感悟算法。
2、 重视笔算与口算相结合,在掌握口算的基础上理解笔算。
笔算乘法的算理与口算乘法是相通的。本节课在教学一位数乘两位数的笔算时,先引导学生掌握口算乘法,让学生讲清思考的过程,在此基础上,结合口算步骤帮助学生理解笔算乘法为什么要从个位起用一位数依次乘一个数各位上的数,这样就揭示了笔算与口算的联系,促进了知识的迁移,使学生理解了笔算乘法的过程与方法。
教学过程:
一、创景导入,提出问题
今天让我们到森林王国去游玩,高兴吗?好,我们出发吧!(出示课件1:笛)森林王国到了,森林里真美,有茂密的大树,野花遍地开放,小动物们在森林里高兴地玩耍。
瞧,大象在干什么呢?(有3头大象在运木头)每头大象运了多少根木头?大象把运来的木头是怎么放的?(每头大象运了20根木头,每10根堆一堆)
小猴在干什么?(有2只小猴在采桃子)每只猴子采了多少个桃子?(每只猴子采了14个桃子)14个桃子怎么放的?(先10个一筐,放了2筐,再4个一筐,也放了2筐)
小朋友们,我们怎么玩呢?老师提议,我们一起来做看物编乘法算式的游戏,
好吗?
1、学生看图自编乘法算式,小组交流,再派代表汇报。
2、学生交流:
(1)你们编的哪些算式自己会口算的?
(2)203=这道算式怎样算呢?142呢?
(3)我们已学过哪些乘法呢?会算的同学将自己的计算方法说给大家听听?不会算的同学再想想,看能不能运用已学过的知识和方法把这些题算出来。
【评析】由有趣的编题引入,激发学生的求知欲望,增强学习的积极性、主动性。更主要的是富有童趣的画面,有利于学生探索不同方法,帮助学生在下面的学习中感悟算法。
二、分组讨论,寻找方法
(一)先独立思考,再小组交流,最后组内推荐一人向大家汇报。教师巡回了解学习情况并参与学习比较困难的小组讨论、指导。
(二)学生汇报交流:
1、汇报口算203这道题的口算思路。(可能会出现)
方法一:20+20+20=60
方法二:3个2堆是6堆,6堆木头就是60根。
方法三:2个十乘3得6个十,6个十就是60。
方法四:因为23=6,所以203=60。
2、引导发现
(1)你喜欢哪种方法?我们现在来想一想,照这样算,8头大象一共运了多少根木头呢
(2)用自己喜欢的方法计算,再小组交流,最后选出比较简单的方法汇报,汇报时,要求相同做法不重复说。
(3)那么口算整十数乘一位数时,用哪一种方法比较简单呢?
(4)归纳小结:口算时,只要想几乘几等于几,那么,几个十乘几就等于几个十。
【评析】这里注意鼓励学生应用已有经验探索新的计算问题,在学生独立思考解决的基础上,再让学生发表自己的观念,倾听同伴的解法,这样的教学,有利于学生间的数学交流,有利于帮助学生养成自主探索、合作交流的学习习惯。
3、巩固:完成想想做做第1题。师出示卡片,学生口算。
4、汇报142的计算方法:(可能会出现以下口算方法)
方法一:14+14=28
方法二:210=20,24=8,20+8=28
帮助学生看图理解:这就是把14分成几和几?先算几个10?(2个10)再算几个4?(2个4)合起来是多少?(28)
【评析】笔算乘法的算理与口算乘法是相通的。这里着重帮助学生理解一位数乘两位数的意义及其结果所表示的数,以便通过知识的迁移,使学生理解笔算乘法的计算过程及方法。
这一计算过程我们也可以用竖式来表示。怎样列竖式计算呢?请同学们打开书看第82页的中间,看看白菜老师是怎样用竖式来计算的。
5、学生看书自学。
师生交流:
(1)要先写出横式,再列竖式算得数。(板书:142=)
(2)列竖式先写什么?再写什么和什么?谁和谁对齐?然后用尺画上横线,边说明边列出竖式。
(3)想一想刚才口算142是分几步算的?
引导学生明白为了计算方便,笔算要用2先乘4,再乘10,然后相加。
先算2乘个位上4得多少?
再算2乘多少?为什么这里的1是10?得多少?20的2写在哪一位上?0呢?
最后要怎样算?
板书:
1 4
2
8 42=8
2 0 102=20
2 8 8+20=28
谁能说一说笔算142先算什么,再算什么,最后算什么?
【评析】口算是笔算的基础,这里紧扣口算,使学生明确先把乘数和被乘数个位、十位上的数分开乘,再把两个积相加。这样教学,就可以把口算方法迁移到笔算中来,既能使学生理解笔算算理,掌握笔算方法,又有利于学生认识口算与笔算之间的联系。
(4)说明:为了计算方便,笔算竖式还可以这样写:一般这样写:
1 4
2
2 8
(边板书边列竖式,说明书写位置)
谁能看着竖式说说在这个竖式里,先算什么?再算什么?结果是多少?
(5)小结:笔算14乘2,先算4乘2得8,8写在个位上,再算10乘2得20,2写在十位上,这样就算得28。最后要在横式等号后面写上得数。
6、试一试:321=
说明可以用 2 1 来列竖式,这样算起来比较简便。
3
学生独立完成,指名板演,共同交流。
师:一般计算完后,可以用再乘一遍的方法进行验算,检查自己算得对不对。
学生验算。
7、小结:计算两位数乘一位数时,也可以用竖式来计算。笔算时,要从
个位起,用一位数依次乘个位、十位上的数,乘到哪一位积就写在哪一位上。同
时要注意养成验算的习惯。
三、分层练习,巩固新知
1、完成想想做做第2题:
要求:看折叠卡计算。如:
2 4 2 4 2 4
2 2 2
8 4 8
2、 完成想想做做第3题:
(1)用竖式计算422和422(第3组题),指名板演,其余做在本子上。
(2)检查订正,重点讲述笔算过程,并说说为什么和十位上相乘的积为什么要对齐十位写?
(3)比较两题有什么不同?并说说计算时应注意什么。
3、 解决实际问题:完成想想做做第4题。
电脑出示图,让我们到森林商店去看一看。
森林商店有4箱矿泉水,每箱有12瓶,想一想,一共有多少瓶?
学生独立完成,集体订正。
4、完成想想做做第6题。
电脑继续出示图,森林商店的货柜里有哪些商品?价钱分别是多少?
(1)买3个机器人要多少钱?
(2)买2只玩具狗要多少钱?
(3)老师带了80元钱,够买4辆玩具汽车吗?
(4)你还能提出什么问题?
电脑逐题出现,学生相应解答。
四、活动小结
1、这节课我们主要讨论了什么问题?(揭示课题)你学会了什么?
2、是的,我们在解决一个新问题时,尽量想办法用已学过的知识和方
法去解决,想到一种方法后,不要满足,再想想有没有其它的方法,然后在多种方法中寻找最合理的方法。
3、作业:完成想想做做第3题中剩下的三组题和第5题。
人教版初一数学教案设计人教版初一数学第一章教案篇八
应用百分数解决实际问题:利息、折扣问题
学习目标:
1、了解储蓄的含义。
2、理解本金、利率、利息的含义。
4、进一步掌握折扣的有关知识及计算方法。
5、使学生进一步积累解决问题的经验,增强数学的应用意识。
考点分析
1、存入银行的钱叫做本金,取款时银行除还给本金外,另外付给的钱叫做利息,利息占本金的百分率叫做利率。
2、利息=本金×利率×时间。
3、几折就是十分之几,也就是百分之几十。
4、商品现价 = 商品原价 × 折数。
四、典型例题
存期(整存整取) 年利率
一年 3.87%
二年 4.50%
三年 5.22%
分析与解:根据储蓄年利率表,三年定期年利率5.22%。
税前应得利息 = 本金 × 利率 × 时间
500 × 5.22% × 3 = 78.3(元)
答:到期后应得利息78.3元。
例2、(解决税后利息)
分析与解:从应得利息中扣除利息税剩下的就是实得利息。
税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%)
或者 500 × 5.22% × 3 × (1 - 5%) = 74.385(元)≈ 74.39(元)
答:纳税后李明实得利息74.39元。
错误解答:1500 × 4.50% ×(1 - 5%) = 64.125(元)≈ 64.13(元)
分析原因:税后实得利息 = 本金 × 利率 × 时间 ×(1 - 5%),这里漏乘了时间。
正确解答:1500 × 2 × 4.50% ×(1 - 5%) = 128.25(元)
答:到期后方明实得利息128.25元。
点评:求利率根据实际情况有时要扣掉利息税,根据国家规定利息税的税率是5%,所以利息分税前利息和税后利息,在做题时要注意区分。但也有一些是不需要缴利息税的,比如:国家建设债券、教育储蓄等。
分析与解:打了几折是求实际售价是原价的百分之几,只要用实际售价除以原价。
6.4 + 1.6 = 8(元)
6.4 ÷ 8 = 80% = 八折
答:这本书是打八折出售的。
点评:几折就是百分之几十,几几折就是百分之几十几,同一商品打的折数越低,售价也就越低。在折数的题目中,打几折就是按原价的百分之几十出售,它并不代表增加或减少的数额。
例5、(已知折扣求原价)
分析与解:打八五折出售,即实际售价相当于原价的85%。已知原价的85%是1020元,要求原价是多少,可以列方程解答。
原价 × 85% = 实际售价
解:设这套西服原价x元。
x × 85% = 1020
x = 1020 ÷ 85%
x = 1200
检验:(1)用现价除以原价看是否打了八五折。
1020 ÷ 1200 = 0.85 = 85%
(2)看原价的85%是不是1020元。
1200 × 85% = 1020(元)
经检验,答案符合题意。
答:这套西服原价1200元。
例6、一台液晶电视6000元,若打七五折出售,可降价元。
分析原因:6000元为原价,打七五折出售,要先算出实际售价再相减,或者先算出降价部分占原价的25%。
正确解答:6000 - 6000×75% = 1500(元)
或6000×(1 - 75%) = 1500(元)
答:可降价1500元。
例7、(和应纳税额有关的简单实际问题)
分析与解:“促销打九折出售”就是按原价的百分之九十出售,用“原价×90%”,“再打九折”是在促销价的基础上打九折,要用促销价乘90%。
2000× 90% × 90%
= 1800× 90%
= 1620(元)
答:如果能够成交,售价是1620元。
点评:题目的关键是“再打九折”表示的意思是在促销价的基础上再打九折,单位“1”的量是促销价,即原价打九折后的价钱,这是易错点,要多加注意。
例8、(考点透视)
分析与解:以40元的价钱卖出,说明实际售价是40元;亏了20%,即亏了原价的20%,因此实际售价相当于原价的(1 - 20%)。
解:设这件商品原价x元。
x × (1 - 20%) = 40
x × 80% = 40
x = 50
50 × 20% = 10(元)
答:这件商品原价50元,亏了10元。
例9、(考点透视)
分析与解:盈利20%,即售出价是成本价的(1 + 20%);亏本20%,即售出价是成本价的(1 - 20%)。两件商品的售出价都是30元,可分别算出两件商品的成本价。
30 ÷(1 + 20%)= 25(元)
30 ÷(1 - 20%)= 37.5(元)
25 + 37.5 = 62.5(元)
62.5 – 60 = 2.5(元)
答:这个商店卖出这两件商品总体上是亏本,亏本2.5元。
人教版初一数学教案设计人教版初一数学第一章教案篇九
1、说出下面各比例尺表示的意思。
1∶40000
2、判断:
这幅图的比例尺为1︰2。 ┈┈┈┈ ( )
②某机器零件设计图纸所用的比例尺为1︰1,
说明了该零件的实际长度与图上是一样的 ┈┈┈┈ ( )
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( )
3、选择:
①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离( )实际距离。
②学校操场长100米,宽60米,在练习本上画图,选用( )作比例尺较合适。
5、 一种精密零件,画在图上是12厘米,而实际的长度是3毫米。求这幅图的比例尺。
8、 一幅地图的线段比例尺是:
0 40 80 120 160千米,甲乙两城在
9、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
(2)写出图上面积和实际面积的比。并与比例尺进行比较。
10、下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。
电影院
●30
● ●
40 广场 公园
● 商店
(1)公园在广场的东面( )千米处。
(2)电影院在广场的( )偏( )( )方向( )千米处。
(3)商店在广场的( )。
参考答案:
1、说出下面各比例尺表示的意思。
1∶40000 表示图上距离是实际距离的 ,实际距离是图上距离的40000倍,图上1厘米的距离代表实际距离40000厘米,即400米。
表示图上1厘米的距离代表实际距离200千米。
2、判断:
①小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。 ┈┈┈┈ ( × )
②某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。 ┈┈┈┈ ( √ )
③一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离。┈┈┈ ( × )
3、选择:
①如果某图纸所用的比例尺小于1,那么这幅图所表示的图上距离( a )实际距离。
②学校操场长100米,宽60米,在练习本上画图,选用( b )作比例尺较合适。
4、一幅地图的线段比例尺是 ,这幅图上3厘米表示实际距离多少千米?这幅图上3厘米表示实际距离6千米。
5、 一种精密零件,画在图上是12厘米,而实际的长度是3毫米。求这幅图的比例尺。
图上距离 : 实际距离 = 比例尺
12厘米 = 120毫米 120 : 3 = 40 : 1
答:这幅图的比例尺是40 : 1。
长:120米 = 12000厘米 12000 × = 3厘米
宽:80米 = 8000厘米 8000 × = 2厘米
答:长应画3厘米,宽应画2厘米。
5 ÷ = 1000000厘米 = 10千米
答:两城实际相距10千米。
8、 一幅地图的线段比例尺是:
0 40 80 120 160千米,甲乙两城在
18 × 40 = 720千米
答:两城间的实际距离是720千米,在这幅地图上两城之间的距离是16.5厘米。
9、在一幅比例尺为1:500的平面图上量得一间长方形教室的长是3厘米,宽是2厘米。
(1)求这间教室的图上面积与实际面积。
图上面积:3 × 2 = 6平方厘米
答:这间教室的图上面积6平方厘米,实际面积是150平方米。
(2)写出图上面积和实际面积的比。并与比例尺进行比较。
与比例尺进行比较1 : 250000 = (1:500)
10、下图是按1︰50000的比例尺绘出的方位图。说一说商店、公园、电影院的位置。
电影院
●30
● ●
40 广场 公园
● 商店
(1)公园在广场的东面( 0.75 )千米处。
(2)电影院在广场的( 北 )偏( 东 )( 60 )方向( 0.75 )千米处。

一键复制