每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
函数奇偶性的教学反思篇一
“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
在讲解对数函数的定义前,复习有关指数函数知识及简单运算,然后由实例引入对数函数的概念,然后,让学生亲自动手画两个图象,我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出对数函数的性质,提高学生的形数结合的能力。作了以上分析之后,再分a1与0。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。
函数奇偶性的教学反思篇二
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
“对数函数”的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。“对数函数”第一部分是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。
然后经行巩固训练,养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。通过反馈来看,大部分学生能够达到本节课的知识目标,并在一定程度上培养了学生主学习、综合归纳、数形结合的能力。最后经行归纳总结,引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。
本节课调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性,充分体现了“教师为主导,学生为主体”的教学原则取得了较好的教学效果。
函数奇偶性的教学反思篇三
对数函数的教学共分两个部分完成。第一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。
1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。
2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。
4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。
以上这些原因我通过认真的反思,同时参考学生提出的意见,决定讲两节习题课,针对学生存在的共性问题解决,找出他们的盲点,同时加强练习力度。从练习中发现问题,再通过系统讲解,直到绝大部分学生理解掌握为止。
函数奇偶性的教学反思篇四
函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。
今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。
关于发展观察、分析、归纳、概括等数学思维能力的反思。
第一个环节是正比例函数概念的形成过程。通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的积(y=kx)。因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。
“自主探究”是当前课程改革积极倡导的学习方式。但是,在日常教学中,我们发现,面对一个新的问题,学生常常不知道从哪里着手解决问题,特别是新知识的探究过程。追其根源,主要是缺乏探究问题的基本策略。如果能够通过本节内容的学习使学生了解函数学习的基本程序和策略,那么,在今后学习一次函数、反比例函数、二次函数等函数的时候,或许无需教师提醒学生就知道如何探究了。
理论上说:“没有教不会的学生,只有不会教的老师。”但对大面积的小学就已经对学习绝望的孩子我真的心有余而力不足。我只能尽我最大的努力让更多的孩子能跟的上,不要对数学绝望。
函数奇偶性的教学反思篇五
教学目标:
知识与技能
结合具体函数了解奇偶性的含义,能利用函数的图像理解奇函数、偶函数;能判断一些简单函数的奇偶性。
过程与方法
体验奇函数、偶函数概念形成的过程,体会由形及数、数形结合的数学思想,并学会由特殊到一般的归纳推理的思维方法。
情感、态度、价值观
通过绘制和展示优美的函数图像,可以陶冶我们的情操,通过概念的形成过程,培养我们探究、推理的思维能力。
教学重点、难点:
重点
重点是奇偶性概念的理解及应用。难点
难点是奇偶性的判断与应用。
教学方法
探究式、启发式。
课堂类型:授新课
教学媒体使用:多媒体(计算机、实物投影)
教学程序与环节设计:
教学过程与操作设计: 环节
教学内容设置 师生双边互动
创
设
情
境
1、分别用描点法画出下列函数的图象。(1)
(2)(3)
(4)x-3-2-1 0 1 2 3
x-3-2-1 0 1 2 3
x-3-2-1 0 1 2 3
x-3-2-1 0 1 2 3
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
师:充分利用几何画板分析函数图象,从而得出奇函数和偶函数的定义。
组
织
探
究
偶函数的概念:
奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数的图象关于原点成中心对称图形,偶函数的图象关于y轴成轴对称图形。反之,亦成立。
(2)根据函数图象的对称性
师:引导学生仔细体会左边的这段文字,感悟其中的实质.
生:认真理解函数奇偶性的定义,并根据函数奇偶性的定义探索其定义域必须是关于原点对称的区间。
师:引导学生运用几何画板探索奇函数和偶函数的图象特征.
师:引导学生结合函数奇偶性的定义,分析函数的图像特征,以确定判定方法。
例
题
研
究
例题
3 作出相应结论:
例(2)
例(3)
例(4)
生:分析函数,按定义探索,完成解答,并认真思考.
生:结合例(1),思考、讨论、总结归纳得出利用定义判断函数奇偶性的格式步骤。
师:引导学生理解利用定义判断函数奇偶性的格式步骤,解决例(2)、例(3)
例(4)。
.尝 试
练
习
巩固练习
(1)
(2)
(3)
(4)
(5)
(6)
探 究 与 发 现
思考题
(1)
(2)
师:研究含参数函数的奇偶性及分段函数的奇偶性并尝试进行系统的总结.
作 业 回 馈
作业
1、课本 p43-6
2、质量监测 p23-
1、2、5、6
课 堂 小 结
1.函数的奇偶性是对整个定义域内任意一个x而言的,是一个整体性概念。
2.奇(偶)函数的定义域应满足在x轴上的对应点必须关于原点对称,即-x和x同在定义域内。
4.体会由形及数、数形结合的数学思想,以及由特殊到一般的归纳推理的思维方法。
收 获 与 体 会
说说函数奇偶性的定义,并给出判定的方法及基本步骤.
函数奇偶性的教学反思篇六
(1)要根据学生的生活经验,创设丰富的情境,使学生体会三角函数模型的意义。例如,通过单摆、弹簧振子、圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型。
(2)借助单位圆,帮助学生直观地认识任意角的三角函数,理解三角函数的周期性、诱导公式、同角三角函数关系式,以及三角函数的图象和基本性质。引导学生自主地探索三角函数的有关性质,培养他们分析问题和解决问题的能力。
(3)弧度是学生比较难接受的概念,教学中应使学生体会弧度也是一种度量角的单位,可在后续课程的学习中逐步理解这一概念,在此不作深究。
2.关于平面向量的教学,应注意以下问题:
(1)向量概念的教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。了解这些物理背景和几何背景,对于学生理解向量概念和运用向量解决实际问题都是十分重要的。
(2)引导学生运用向量解决一些物理和几何问题。例如,利用向量计算力使物体沿某方向运动所做的功,利用向量解决平面内两条直线平行与垂直的位置关系等问题。对于用向量解决较为复杂的平面几何问题不作要求。
(3)向量的非正交分解、向量投影的概念只要求了解,不必展开。线段定比分点坐标公式及应用不作要求。
3.三角恒等变换的教学,应注意以下问题:
(1)教学中,注意展示数学发现的过程,可以引导学生利用平面向量的数量积推导出两角差的余弦公式,并由此公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式。
(2)鼓励学生独立探索和讨论交流,引导学生推导积化和差、和差化积、半角公式,以此作为三角恒等变换的基本训练。
(3)能利用同角三角函数的基本关系式、诱导公式、两角和与差的三角函数公式、二倍角的三角函数公式,进行简单的三角函数式的化简、求值及恒等式证明。其中,简单的三角函数式的化简、求值及恒等式证明指三角函数变形的次数一般不超过三次,整个解题过程中三角函数公式的使用一般不超过5个。
函数奇偶性的教学反思篇七
一、教材分析 1.教材的地位和作用
内容选自人教版《高中课程标准试验教科书》a版必修1第一章第三节;函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。研究函数的奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究为后面学习幂函数,三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2.学情分析
已经学习了函数的单调性,对于研究函数性质的方法已经有了一定的了解。尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图像的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高。二.教学目标 知识与技能: 1.从数与形两个方面进行引导,使学生深刻理解函数奇偶性的概念。2.能利用定义判断函数的奇偶性。
过程与方法;通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
教法:借助多媒体以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式。
学法:根据自主性和差异性原则,以促进学生发展为出发点,着眼于知识的形成和发展,着眼于学生的学习体验。
过程分析
1.3.2 函数的奇偶性
一奇偶函数的定义二函数奇偶性的判断三奇偶函数的性质四例题讲解
函数奇偶性的教学反思篇八
“课内比教学”是教育本质的回归,是提高教师专业素质、促进教师专业成长的重要途径。在此次活动中,我主讲的课题是《二次函数的概念》。通过讲课、评课,我收获颇多。
二次函数是初中阶段研究的最后一个具体的、重要的函数,在历年来的中考中题中都占有较大的分值。二次函数不仅和学生以前学过的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想具有重要作用。而二次函数的概念是以后学习二次函数的基础,在整个教材体系中起着承上启下的作用。
本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过“一题多练”巩固二次函数的概念并解决一些简单的数学问题。
我个人以为,本节课的成功之处有以下几点。一是在教学设计上“步步为营”、学生的思维能力“层层提高”。在教学设计上,根据内容的发展,我合理设计了具有针对性的问题,借助学生已有的知识背景展开教学,同时,在解决“老”问题的过程中巧妙地“埋设”新问题,环环相扣、引人入胜,充分激发学生的求知欲、调动学生学习的主动性。
二是在总结中不仅注重对知识的梳理和巩固,而且注重提炼出让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。
三是学生的能力得到发展。常言道:尺有所短、寸有所长。不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到“吃不饱”,久而久之就会失去主动思考、主动探究的兴趣。在本节课的最后,我补充的练习题,对这部分学生开阔视野、提高探究能力,都很有好处。
本节课的不足是,一是细节上还有待完善,比如在二次函数的表示上,强调按自变量的降幂排列进行整理还不够突出;再如,课堂放得很开,但有时在该收回的时候收得不够,等等。在今后的教学中,我会特别注意这些方面的问题。

一键复制