无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
分数与除法的关系教学反思 精品 分数和除法的关系反思篇一
我叫学生拿出前准备好的三个圆,让学生在小组内用自己喜欢的方式验证对除以4这一结果的猜想。孩子们或静下心仔细思考;或把自己手里的圆形折一折、剪一剪;或在本子上画一画、写一写;或同桌小声交流自己的想法。我把想法不同的孩子叫上讲台,在黑板上画出自己的思考过程。并让他们一一介绍。通过学生的操作,得出两种分法,方法(一):把三个圆一个一个分,每次得四分之一,分次,就得个四分之一,就是四分之三张饼。方法(二):把三个圆叠起,平均分成4份,得到张饼的四分之一,也是个四分之一,相当于一张饼的四分之三。不管怎样分,都可以验证÷4用分数四分之三表示结果。还有学生想出了方法(三):除以4得07,07化成分数也是四分之三。通过学生自主操作让其充分理解其中的算理。
在学生初步感知分数与除法的关系时,我有意识地把例题改了一下,把块饼平均分给个人,把4块饼平均分给7个人,让学生通过画图或说理,快速的算出它们的商。让学生亲身体会到计算两个整数相除,除不尽或商里面有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
通过学生自主生成的三道算式,让学生去发现除法与分数之间到底有怎样的关系?并把自己的想法和同桌互相交流。最终学生小结出:除法中的被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。并明确:除法是一种运算,而分数是一种数。
出示:
把三块饼平均分给7个小朋友,每人分得这些饼的几分之几。
把三块饼平均分给7个小朋友,每人分得几分之几块。
让学生观察这两道题目的区别,一道带单位,一道不带单位。第一道是根据分数的意义把单位"1"平均分成几份,每份就是单位"1"的几分之一,是份数与单位"1"的关系,在数学中我们称为分率,分率不带单位。第二题带单位则表示的是一个具体的数量,则用总数量除以平均分的份数得到每份的具体数量,得数的单位跟被除数的单位一致。明确:分数有两种含义,一种表示与单位1的关系即分率(不带单位),一种则表示具体的数量(要带单位),为以后学习分数和百分数应用题做好铺垫。
在教学过程中,让学生在自主参与,动手操作、观察比较、交流汇报的基础上去推理和概括,能达到事半功倍的效果。我一直崇尚让学生自己去发现,自己去总结,让学生能学习探究问题的方法,而不是单纯的教授一些解题技巧,因为我知道授生以"渔"永远比授生以"鱼"的重要的多!
分数与除法的关系教学反思 精品 分数和除法的关系反思篇二
本节课在学习分数的意义基础上进行教学的。分数的意义是从部分与整体的关系揭示的。分数与除法可以表示两个整数相除(除数不能为0)的商揭示分数的另一方面的意义,以加深和扩展学生对分数意义的理解,同时为学习假分数以及把假分数化为整数或带分数作准备。
夯实分数的意义的第二种情况。在教学例1时,将除法的意义与分数的意义联系起来。实际上把1个蛋糕平均分给3人,求每人分得几个,就是应用整数除法的意义来列算式,只不过结果是依据分数的意义得出来的。而在例2的教学中,首先通过学生把3块饼平均分给4个小朋友,每个小朋友分几块,也是应用平均分的除法意义列出算式,然后让学生实际分一分,学生通过动手操作得出三种不同的分法:一是把第1个饼平均分成4份,每个小朋友分得1/4块,再把第2、3个饼同样均分,最后每人分得3个1/4块,把它们拼在一起,得到1个饼的3/4;第二种是把3个饼摞在一起,平均分成4份,每个小朋友分得3个饼的1/4,拼在一起就是1个饼的3/4;第三种是把每个饼平均分成4份,一共分了12份,把12份平均分给4个小朋友,每个小朋友分3份,也就是3个1/4份,即3/4块。通过两个例题的教学,明确列式与整数除法的意义相同,在计算时依据被除数÷除数=被除数/除数,
学生在求一个数是另一个数的几分之几时,列式总是出错,被除数和除数容易颠倒。
1.加强求一个数是另一个数的几分之几的列式训练。
2.在教学中还要加强分数意义的两种情况的对比,让学生明确分数不仅表示部分与整体之间的关系,还表示实际数量。
分数与除法的关系教学反思 精品 分数和除法的关系反思篇三
本节课的教学着重让学生在以下几方面理解:
1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。
2、一个分数,不但可以从分数的意义上理解,也可以从分数...
本节课的教学着重让学生在以下几方面理解:
1、分数与除法之间有着密切的联系,但分数不等同于除法,二者之间有一定的区别:除法是一种运算,分数是一个数。
2、一个分数,不但可以从分数的意义上理解,也可以从分数与除法的关系上理解。如:四分之三可以理解为把单位“1”平均分成4份,表示其中的3份的数;也可以理解为把3平均分成4份,表示这样一份的数。
3、为了让学生更好的记忆分数与除法的关系,我还设计了顺口溜:
分数、除法关系妙,记忆方法有诀窍。
两数相除分数表, 弄清位置很重要。
除号相当分数线,分子、分母两数担。
位置顺序不能调,相互关系要记牢。
分数与除法的关系教学反思 精品 分数和除法的关系反思篇四
教学片段:
师:把1米长的铁丝平均分成3段。每段长多少米?(你是怎样想的的?结果是多少?为什么?)
生1:把1米平均分成3份,每份就是1/3米。
生2:1÷3=1/3(米)
生3:总量÷份数=每份数
生4:可用线段来表示
师:把2米长的铁丝平均分成3段。每段长多少米?
生1:2÷3=2/3(米)
生2:不,应该是1/3米
师:你们能分别解释一下原因吗?
当这里学生似乎有些糊涂的时候,不知1/3米和2/3米有何区别时?老师及时的出示两段线段,让学生直观的看到了第一题和第二题的区别,问题也随着解决了,数学课中抽象的东西很多时候就需要像线段图这种直观的图形来解决。
教学片段:
师:把3块圆饼平均分给4个小朋友,每个小朋友分得多少块?(你是怎样列式的?结果是多少?)
生:3÷4=3/4(块)
师:你能解释一下为什么是3/4块吗?
验证3÷4为什么等于3/4这一过程,这里教师并没有直接告诉学生答案,而是要学生自己来说一说为什么?学生利用手中现有的材料自己动手画一画、剪一剪、拼一拼,自主探索、交流合作,发现问题,解决问题。探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”。在整个教学的过程,教师为学生创设各种不平衡的问题情境,让学生在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题。上面的教学片段中,教师给学生留与了操作的空间,为学生在操作的过程中自己生发问题,并在充分的讨论和思考中使学生相互解决问题,奠定了学习的基础。同时,在教学的过程,教师挑起“矛盾”,引发疑问,引起争论,促使学生进行深入思考,促使学生对自己所从事的活动产生兴趣,形成主动学习的心态。因此,一个富有生命力的课堂,必是注重学生学习过程的课堂,一个促使学生的问题不断解决与生成的课堂。

一键复制