范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
高考数学答题技巧五步走高考数学答题技巧新东方篇一
拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥你的实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。注意机读卡的填涂问题,做完一道大题就填一部分,把第一卷做完后及时填涂,以避免全部做完再填时没时间。
很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。
一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。这种题主要是考你的审题能力与心理素质。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的.。
考试时出现记忆或思维的暂时中断时可以跳开去做另一道容易做的题;或翻看试卷,由此及彼,触类旁通;又或者埋头由大到小缩小包围圈搜索记忆。
有一些同学平时考试成绩较好,但面临重大考试往往会发挥失常,主要是考试时不相信自己,老是回头检查,老是重复计算,结果导致时间不够和心理紧张。应该先把容易的题做完再回过头来检查,而且马上做了马上检查也不利于发现问题。
“优秀是一种习惯”,好的习惯终生受益,坏习惯终生吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
高考数学答题技巧五步走高考数学答题技巧新东方篇二
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学答题技巧五步走高考数学答题技巧新东方篇三
“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系、在方法上互相渗透、在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的。在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位置、性质,综合图象的特征,得出结论。用这种方法,既方便解题又容易让人明白。
从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。
数学可谓是高考中最易得分科目,只要你平时做好准备,相信在高考中会考到你满意的分数。最后冲刺的一个月,不妨参考过来的考试经验,答题技巧,找最适合的方法去迎战20xx年高考数学。
高考数学答题技巧五步走高考数学答题技巧新东方篇四
几乎在每次数学考试中,都有因马虎,算错数,丢三落四等原因而导致数学成绩丢掉本不该丢掉的分值,请分析一下这样的现象。
这样的问题确实让考生犯难、但是一般很难克服。有人认为这样的失误都可以归结为是计算能力的问题。其实,谁也不能保证考试中所有的计算都不出现失误,所以因为计算所致的失误在高考数学中也可谓是偶然中的必然,只是或多或少的事。但是也有人认为,这是一种是否严谨的习惯的问题,只能靠平时的训练中潜意识的克服,养成习惯。
一般认为,需要从以下几个方面及早的加以注意:
首先要培养学生独立思考的习惯,不能仅依赖于老师的讲授。因为对于各知识之间的内在联系和涉及到的思想方法等,需要独立思考才能达到。
二是要培养学生认真练习,主要是练速度、练方法、练准确、练规范,精力集中、字迹清秀、操作规范。
三是要培养学生认真归纳总结、反思,肯定自己的成功之处,帮助增强学习的信心。
四是培养学生高效听课、参与课堂教学。课堂是学生接受知识的主渠道,高效听课就是课堂上使自己的思维处于非常积极的状态,主动地对老师提出的问题进行思考、分析、综合和创造,善于自主探索与合作交流与老师共同完成一节课的学习,才能收获该收获的东西,才能在各种解题方法中选取其中简洁的思维路径,取得问题的最佳解法,使能力培养落到实处。
五是培养学生逐步养成一遍算对的良好运算习惯;养成纠错和小结的学习习惯;不断研究学情,调整教学方法和策略,以获得最佳的教学效果。
六是要对学生进行模拟限时的测试。每份模拟试卷要时易时难,以培养学生的心理调控、情绪调节和随机应变的能力。当然书面表达能力的规范性也要引起注意。
高考数学答题技巧五步走高考数学答题技巧新东方篇五
历经千辛万苦的高三学生,都希望在高考时有个高水平的发挥,取得理想成绩,可是总是有的考生事与愿违,造成遗憾。如何在高考有限的时间内充分发挥自己的水平,对每个考生来说是举足轻重的事,它对你数学成绩的影响也许是几分、十几分、甚至更多。只有平时多流汗,才能战时少流血。决胜考场的能力必须在平时加以训练,不断总结每次考试的得失,寻找成功的经验,发现失败的原因,提炼出适合自己的考试方法和策略,根据我们的观察与分析,结合以往学生的经验和教训。下面是高考考场答题技巧总结,请考生及时查看。
一方面,模拟考试需要高度重视,要营造仿真的考试环境,限时完成,养成在紧张环境中解答问题的有条不紊的品质。再一方面,考前保持必胜的信心是非常必要的,走进考场要信心百倍,即使遇到困难也不要慌张,因为大家是平等的。另外,要明确,进入考场适度紧张是正常的也是必要的,因为它有利于我们进入兴奋姿态,千万不能因此而引起不必要的慌张。
审题之后解题:审清题意,有的放矢常言说得好,“磨刀不碍切菜事”。在批考卷时,经常发现学生在解答过程中,有的半途而废、有的张冠李戴、有的文不对题。为此,我们走访了一些考生,他们觉得自己犯了低级的习惯性错误—审题不严。
审题是解题的基础,需要认真阅读,仔细推敲,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络,纲举目张。反思题意能弥补审题的不足,有时需要再审视“题眼”,防止误解,因为题中一字之差会导致结论谬之千里。对于貌似熟悉的问题更应警惕,因为大部分时候会熟题新编,如果不假思索,跟着感觉走就会“熟能生错”了,对题目的条件和结论需要再回首,防止条件误用、漏用,也防止答非所问。
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”,“对而不全” “全而不美”的情况,考生自己的估分与实际得分差之甚远。例如,02年春季高考第20题第(1)小问是证明函数的单调性,许多考生以“说明代替证明”,难以获得满分。还有在立体几何的解题中,特别是计算题中,没有对有关元素的确认和说理的过程,尽管解题思路正确甚至很巧妙,得分少得可怜。必须重视解题过程的语言表述,不能“心中有数”,得过且过。必须表达准确,论证清楚,“会做”的题才能“得分”,这需要我们在平时的训练中精益求精,脚踏实地,保证会的做对,对的做全。即使不完全会做,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫 “大题拿小分”,是个聪明之举。
快速必须准确:以准求胜,稳扎稳打考试时有的同学快做,期待以后检查;有的同学稳扎稳打,做一题争取对一题。在目前题量大、时间紧的情况下,要先在正确率上下功夫,以稳取胜,当正确率得到保证以后,速度会自然而然地提上去的。答题时要做到字字有据,步步准确,书写规范,尽量一次成功,正因为稳和准,所以你就不必考虑再花时间检查。而“快”是平时训练的结果,不是考场上所能解决的问题,不能患得患失。一味求快,只会快一点,错一片,尽做无用功,检查时也难以得到全面校正。
高考数学答题技巧五步走高考数学答题技巧新东方篇六
高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。
第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。
第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。
第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。

一键复制