在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
六年级要求篇一
写事要求清楚、具体,小学作文的要求。一件事情的发生,总离不开时间、地点、人物和事情的起因、经过、结果。这就是人们常说的“记叙文六要素”。把这六个方面写清楚了,才能让读者明白究竟是一件什么事。同时,还要寓理于事,即通过一件事或几件事来说明一个道理。在六要素当中,起因、经过、结果是事情的主要环节。其中,“经过”部分又是事情的核心,是全文成败的关键所在。在小学生的作文里,“经过”部分写得不具体是带有普遍性的问题。小学生的继续文不感人,平淡乏味,这是其中一个重要原因。记事的记叙文可分两种:写事和写活动。
一是把“经过”部分分成几个阶段,然后按照先后顺序一层一层地写得清楚。写的时候多文几个“后来怎样”,文章就具体了。
二是注意材料的详略,有所侧重。对一些重要的过程、场面要细致描绘,使读者有如身临其境。
三是对事件中的人物,特别是主要人物,当时是“怎么说的”、“怎么做的”,又是“怎么想的”,一定要写具体。
活动都是有目的、有形式、有过程的`。搞什么活动?为什么搞活动?则眼搞活动?活动的结果怎样?都要写清楚。写活动也要求写清楚“六要素”,要把活动的时间、地点、人物和活动开始、经过、结果写出来。
在整个活动当中,不是写一个人,二是写一群人;不是用一两件事来写人物,而是通过写一个活动场面,来表现人物的精神面貌。写活动的记叙文,最大的特点就是必须有活动的基本内容、主要过程和重要场面。把印象最深刻的内容作为重点,把自己看到的、听到的、亲身经历的主要部分记叙下来,采用点面结合的方法,既要写好群体活动,又要把个体代表写进去;既要写整个场面,又要突出典型人物,作文指导《小学作文的要求》。
写活动的文章一般包括两大部分:一是活动的经过,二是自己的感受。如果写“参观”活动,就要用“观一处,感一处”的方法。写整个活动的过程,要用顺叙法,即按活动的先后顺序,把活动时间、地点、人物及活动的经过和结果依次写出来。
首先,景物有狭义和广义之分。狭义的景物指提供人观赏的风景、建筑等;广义的景物指自然景观和人文景观,即自然环境和身会环境。换句话说,记叙文中的景物描写是指对自然风光、建筑物、动物、植物等事物的描写,所描写的景物在文章里占重要位置,这是写景记叙文与写人记事的记叙文的主要区别写人记事的记叙文中,有对自然环境和人物活动的背景介绍、环境描写,但它们在文章中不是主要内容,是为交代事件发生的时间、地点、环境,为渲染气氛服务的。同理,写景记叙文里也有写人叙事的内容,但都是为写景服务的。其次,写景记叙文的中心思想是通过对景物的描写和人物感情抒发表达出来的。作者可以在文章中直接抒发感情,即所谓直抒胸臆,也可以通过写景表达出来,即所谓寓请于景;还可以在景物描写中蕴涵自己的主观感受,即所谓情景交融。要注意景物描写必须为人物的思想感情服务,与人物的思想感情相一致,不能孤立地、无目的地写景。
六年级要求篇二
通过义务教育阶段的数学学习,学生能够:
具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展。
具体阐述如下:
知识与技能
经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。
经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,并能解决简单的问题。
经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题。
数学思考
经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。
丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。
经历运用数据描述信息、作出推断的过程,发展统计观念。
经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
解决问题
初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识。
形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
学会与人合作,并能与他人交流思维的过程和结果。
初步形成评价与反思的意识。
情感与态度
能积极参与数学学习活动,对数学有好奇心与求知欲。
在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
形成实事求是的态度以及进行质疑和独立思考的习惯。
以上四个方面的目标是一个密切联系的有机整体,对人的发展具有十分重要的作用,它们是在丰富多彩的数学活动中实现的。其中,数学思考、解决问题、情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须以有利于其他目标的实现为前提。
知识与技能
经历从现实生活中抽象出数及简单数量关系的过程,认识亿以内的数,了解分数、百分 数、负数的意义,掌握必要的运算(包括估算)技能;探索给定事物中隐含的规律,会用方 程表示简单的数量关系,会解简单的方程。
经历探索物体与图形的形状、大小、运动和位置关系的.过程,了 解简单几何体和平面图形的 基本特征,能对简单图形进行变换,能初步确定物体的位置,发展测量(包括估测)、识图 、作图等技能。
经历收集、整理、描述和分析数据的过程,掌握一些数据处理技 能;体验事件发生的等可能性、游戏规则的公平性,能计算一些简单事件发生的可能性。
数学思考
经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函 数;掌握必要的运算(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用 代数式、方程、不等式、函数等进行描述。
经历探索物体与图形的基本性质、变换、位置关系的过程,掌握 三角形、四边形、圆的 基本性质以及平移、旋转、轴对称、相似等的基本性质,初步认识投影与视图,掌握基本的 识图、作图等技能;体会证明的必要性,能证明三角形和四边形的基本性质,掌握基本的推理技能。
能运用生活经验,对有关的数字信息作出解释,并初步学会用具体的数描述现实世界中的 简单现象。
在对简单物体和图形的形状、大小、位置关系、运动的探索过程中 ,发展空间观念。
在教师的帮助下,初步学会选择有用信息进行简单的归纳与类比。
在解决问题过程中,能进行简单的、有条理的思考。 能对现实生活中有关的数字信息作出合理的解释,会用数、字母和图表描 述并解决现实世界中的简单问题。
六年级要求篇三
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
4、像-16、-500、-3/8、-0.4…这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。+6.3读作正六点三。0既不是正数,也不是负数。
6、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。
7、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8<-6。
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面,。
5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。
7、圆柱的侧面积 = 底面周长×高 即s侧=ch 或 2πr×
8、圆柱的体积=圆柱的底面积×高, 即v=sh或 πr2×
(进一法:实际中,使用的材料都要比计算的结果多一些 ,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。)
9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。
10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。)
11、把圆锥的侧面展开得到一个扇形。
13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7、比例的意义 :表示两个比相等的式子叫做比例。如:2:1=6:
8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。
9、比例的性质 :在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
10、解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
例如:3:x = 4:8,内项乘内项,外项乘外项,则:4x =3×8,解得x=6。
11、正比例和反比例 :
(1)、成正比例的量: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。 用字母表示y/x=k(一定)
例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。
②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。
③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。
④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。
⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。
12、图上距离:实际距离=比例尺;
例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。
13、实际距离=图上距离÷比例尺;
例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。
14、图上距离=实际距离×比例尺;
例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
最后,预祝重庆的同学们都能取得优异的成绩,进入理想的中学!

一键复制