我们应该积极参与公益事业,为社会做出自己的贡献,共同构建一个和谐的社会环境。写一个较为完美的总结,需要多次修改和润色,确保语言清晰准确,逻辑流畅。这些总结范文展示了不同人在总结中的思考和成果,有助于我们提高写作的水平和质量。
高二数学必修3知识点篇一
1.两角和与差的正弦、余弦和正切公式:
重点:通过探索和讨论交流,导出两角差与和的三角函数的十一个公式,并了解它们的内在联系。
难点:两角差的余弦公式的探索和证明。
2.简单的三角恒等变换:
重点:掌握三角变换的内容、思路和方法,体会三角变换的特点。
难点:公式的灵活应用。
三角函数几点说明:
1.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深。
2.用同角三角函数基本关系证明三角恒等式和求值计算,熟练配角和sin和cos的计算。
3.已知三角函数值求角问题,达到课本要求即可,不必拓展。
4.熟练掌握函数y=asin(wx+j)图象、单调区间、对称轴、对称点、特殊点和最值。
5.积化和差、和差化积、半角公式只作为练习,不要求记忆。
6.两角和与差的正弦、余弦和正切公式。
高二数学必修3知识点篇二
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类。
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式。
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集n_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
高二数学必修3知识点篇三
1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系。
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关。
二、两个变量的线性相关。
从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。
当r0时,表明两个变量正相关;
当r0时,表明两个变量负相关。
r的绝对值越接近于1,表明两个变量的线性相关性越强。r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系。通常|r|大于0.75时,认为两个变量有很强的线性相关性。
三、解题方法。
1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断。
2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性。
3.由相关系数r判断时|r|越趋近于1相关性越强。
读书破万卷下笔如有神,以上就是为大家整理的9篇《高二数学必修五知识点总结》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
高二数学必修3知识点篇四
(4)解不等式的结果,原则上要用集合表示。
二、一元二次不等式的解集。
三、解一元二次不等式的基本步骤:
(1)整理系数,使次项的系数为正数;
(2)尝试用十字相乘法分解因式;
(3)计算。
(4)结合二次函数的图象特征写出解集。
四、高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解。
(注意每个因式的次项的系数要求为正数)。
五、分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
1、重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法。
3、重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式,会解简单的指数不等式和对数不等式。
高二数学必修3知识点篇五
1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、两类恒成立问题图象法——恒成立,则=?
4、线性规划问题。
(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界。
(2)目标函数改写:(注意分析截距与z的关系)。
(3)平行直线系去画。
5、基本不等式的形式和变形形式。
如a,b为正数,a,b满足,则ab的范围是。
6、运用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘记交代是什么时候取到=!!)。
一个非常重要的函数——对勾函数的图象是什么?
运用对勾函数来处理下面问题的最小值是。
和——倒数和(1的代换),如x,y为正数,且,求的最小值?
和——积(直接用基本不等式),如x,y为正数,,则的范围是?
不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,,则的'范围是?
高二数学必修3知识点篇六
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥。
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点。
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成。
几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成。
几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成。
几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。
几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图。
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、
俯视图(从上向下)。
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法。
斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;
原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积。
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)。
(3)柱体、锥体、台体的体积公式。
高二数学必修3知识点篇七
1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:p(a)=构成事件a的区域长度(面积或体积);。
试验的全部结果所构成的区域长度(面积或体积)。
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件a的概率可以用“事件a包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。下面就几何概型常见类型题作一归纳梳理。
高二数学必修3知识点篇八
(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例fn(a)=nna为事件a出现的概率:对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n的比值nna,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。
高二数学必修3知识点篇九
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点。
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行。
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交。
二面角。
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直。
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
数学二次函数的性质。
(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。
(2)二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线开口向上;当a0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。
(3)一次项系数b和二次项系数a共同决定对称轴的位置。
一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左侧;当a与b异号时(即ab0),对称轴在y轴右侧。
(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。
高中数学的学习方法。
1.抓住重点听讲。
上课前我是一定要预习的,有时间就看的仔细些,老师要讲什么内容,有什么定义、定理和公式我先都记住,再看一些例题去理解定义和定理的应用,脑子里会形成那些我明白了,那些不理解,记在本子上。上课的时候,老师嘴一张开我就知道老师要讲什么了,会的我就看自己的书,不会的我就仔细听讲。
我善于抓住重点去听讲,记的时候,我看其他同学是什么都记,我不是,凡是书上有的内容我从不记,比如定义、定理和公式和书上的例题。我只记一些书上没有的内容,我不会的内容,还有老师说这是重点或难点的内容。我经常在书上做一些纪录,我的书看完是满书涂鸦,不适合别人看了,以后自己一翻书,我就会从我的纪录上回忆这一节的全部内容,一翻书就回忆,经常翻就记的很牢了。
2.多看辅导书。
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。
3.定期整理归纳。
每学完一章的内容,我都要进行小结。把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。
高二数学必修3知识点篇十
1、几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2、几何概型的概率公式:p(a)=构成事件a的区域长度(面积或体积);试验的全部结果所构成的区域长度(面积或体积)。
3、几何概型的特点:
1)试验中所有可能出现的结果(基本事件)有无限多个;
2)每个基本事件出现的可能性相等、
4、几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
高二数学必修3知识点篇十一
悟言一室之内(通“晤”)。
趣舍万殊(通“取”。教材注释为:趣,趋,趋向,取向。)。
2.一词多义。
(1)修。
修禊事也(动词,做,从事)。
茂林修竹(形容词,高)。
况修短随化(形容词,长)。
(2)一。
其致一也(统一,一致)。
悟言一室之内(数词)。
固知一死生为虚诞(动词,把……看作一样)。
3.词类活用。
(1)形容词活用为名词。
群贤毕至(贤才)。
不知老之将至(老年)。
况修短随化(寿命的长(短))。
(2)形容词活用为动词。
固知一死生为虚诞(把……看作一样)。
齐彭殇为妄作(把……看作相等)。
(3)动词的使动用法。
所以游目骋怀(使……纵展;使……驰)。
所以兴怀(使……兴起)。
二、文言虚词。
1.以。
(1)介词,把。引以为流觞曲水。
(2)介词,因为。犹不能不以之兴怀。
(3)连词,用来。亦足以畅叙幽情。
2.于。
(1)介词,引出动作的处所。会于会稽山阴之兰亭。
(2)介词,对或在。暂得于己。
(3)介词,引出动作的对象。当其欣于所遇。
(4)介词,到。终期于尽。
3.为。
(1)动词,作为,当作。引以为流觞曲水。
(2)动词,成为。已为陈迹。
4.之。
(1)结构助词,的。暮春之初/会于会稽山阴之兰亭/虽无丝竹管弦之盛。
(2)助词,定语后置的标志。仰观宇宙之大。
(3)助词,主谓之间取消句子独立性。夫人之相与/不知老之将至。
(4)动词,到,往。及其所之既倦(所之:所喜爱的事物)。
(5)代词,它。感慨系之矣/犹不能不以之兴怀。
5.所。
构成所字结构,相当于名词短语。
或因寄所托。
当其欣于所遇。
及其所之既倦。
一、字。
1、传道受业解惑2、或师焉,或不焉。
二、词。
(一)古今异义。
1、古之学者必有师:
2、小学而大遗。
3、今之众人。
4、师不必贤于弟子。
(二)、一词多义。
(1)师。
1、古之学者必有师。
2、吾师道也。
3、吾从而师之。
4、师道之不传也久矣。
5、巫医乐师百工之人。
(2)传。
1、师道之不传也久矣。
2、所以传道受业解惑也。
3、六艺经传皆通习之。
(3)其。
1、爱其子,择师而教之。
2、其闻道也亦先乎吾。
3、其为惑也终不解矣。
4、其皆出于此乎。
5、其可怪也欤。
6、传其道解其惑者也。
7、其出人也远矣。
8、夫庸知其年之先后生于乎。
(4)于。
1、其皆出于此乎。
2、师不必贤于弟子。
3、学于余。
4、于其身也。
5、不拘于时。
(5)之。
1、非蛇鳝之穴无可寄托者。
2、择师而教之。
3、师道之不传也久矣。
4、句读之不知。
5、巫医乐师百工之人。
6、爱其子,择师而教之。
7、师道之不复,可知矣。
8、六艺经传,皆通习之。
(三)词类活用。
1、其下圣人也亦远矣。
2、而耻学于师。
3、小学而大遗。
4、位卑则足羞。
5、吾从而师之。
6、吾师道也。
三、句。
(一)文言句式。
:1、句读之不知,惑之不解,或师焉,或不焉。
:1、不拘于时,学于余。
:1.师者,所以传道受业解惑也。
2.道之所存,师之所存也。
:1.师不必贤于弟子。
2.生乎吾前;生乎吾后。
(二)语句翻译:
1.吾师道也,夫庸知其年之先后生于吾乎?是故无贵无贱,无长无少,道之所存,师之所存也。
2.今之众人,其下圣人也亦远矣,而耻学于师。
3.巫医乐师百工之人,君子不齿,今其智乃反不能及,其可怪也欤!
4.李氏子蟠,年十七,好古文,六艺经传皆通习之,不拘于时,学于余。余嘉其能行古道,作《师说》以贻之。
高二数学必修3知识点篇十二
数列题。
证明不等式时,有时构造函数,利用函数单调性很简单。
立体几何题。
证明线面位置关系,一般不需要去建系,更简单;
注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
概率问题。
搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
搞清是什么概率模型,套用哪个公式;
记准均值、方差、标准差公式;
求概率时,正难则反(根据p1+p2+...+pn=1);。
注意计数时利用列举、树图等基本方法;
注意放回抽样,不放回抽样。

一键复制