工作学习中一定要善始善终,只有总结才标志工作阶段性完成或者彻底的终止。通过总结对工作学习进行回顾和分析,从中找出经验和教训,引出规律性认识,以指导今后工作和实践活动。总结怎么写才能发挥它最大的作用呢?下面是小编带来的优秀总结范文,希望大家能够喜欢!
六年级数学知识点总结冀教版六年级数学知识点总结北师大版篇一
总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它是增长才干的一种好办法,让我们一起来学习写总结吧。总结怎么写才不会流于形式呢?下面是小编为大家收集的六年级上数学知识点总结,欢迎阅读与收藏。
分数乘法意义:
1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。倒数的意义:乘积为1的两个数互为倒数。
1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。1的倒数是它本身。因为1x1=10没有倒数。
分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。注:10/2=5/1,表示比读5比1,19:2=5,是比值,比值是一个数,可以是整数,分数,也可以是小数。
比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
主要是求一个数的几分之几是多少?
(1)标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
连比如:3:4:5读作:3比4比5
一个数除以小于1的数,商大于被除数。一个数除以1,商等于被除数。一个数除以大于1的数,商小于被除数。
1.圆的特征:在同一个圆里,有无数条直径,且所有的直径都相等。
在同一个圆里,有无数条半径,且所有的半径都相等。
2.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线直线叫做对称轴。3.圆的面积推导,用逐渐逼近的转化思想。
把一个圆等分(偶数份)成的份数越多,拼成的图像越接近长方形。
体现化圆为方,化曲为直的思想,应用转化思想。化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
找出拼出的图形与圆的周长和半径有什么关系?
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半×圆的半径
s=πr×r
s圆=πr×r=πr2
4.圆的周长:c=2πr=πd
在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。圆心确定圆的位置,半径确定圆的大小。
1、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。
2、利用分数除法把分数化成小数,再化成百分数。除不尽的情况结果保留三位小数三位小数,因此分子除以分母的商要算到小数第四位,四舍五入后,近似商取三位数。百分号前保留一位小数。这种方法适用范围广。百分数化成分数,写成分数形式,再约分。
分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或者百分比。
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。
条形统计图可以知道每个数量的多少。折现统计图可以知数量的增减,扇形统计图可以知道部分和总量的关系。
研究中国古代的鸡兔同笼问题。
351343523335332
(逐一列表法、腿数少小幅度跳跃、腿数多大幅度跳跃、跳跃逐一相结合、取中列表)
2、用假设法解决(1)假如都是兔(2)假如都是鸡
(3)假如它们各抬起一条腿(4)假如兔子抬起两条前腿
(5)这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?3、用代数方法解(一般规律)
整数、分数、百分数应用题结构类型
(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数
例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
180×=150
6(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”
3
5组人数共有学生多少人?3
120÷=200
第一单元位置
1、行和列的意义:竖排叫做列,横排叫做行。2、数对可以表示物体的位置,也可以确定物体的位置。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法
(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
55
例如:×6,表示:6个相加是多少,还表
1212
5
示的6倍是多少。12
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
55
例如:6×,表示:6的是多少。
12122525
×,表示:的是多少。
712712
(二)、分数乘法的计算法则:
1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
1
等于或大于它本身。一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?
(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。(7)乘法应用题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。(9).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。单位“1”×分率=比较量;比较量÷分率=单位“1”(10).单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
例如:1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)
1、倒数:乘积是1的两个数互为倒数。2、求倒数的方法:把这个数写成分数形式,然后将分子和分母交换位置。
3、0没有倒数,1的倒数是它本身。
4、真分数的倒数都大于它本身,假分数的倒数等于或小于它本身。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
第三单元分数除法
(一)、分数除法的意义:
分数除法的意义:分数除法的意义与整数除法的
2
意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:
2512表示:已知两个数的积是,514542与其中一个因数,求另一个因数是多少。
2525÷4表示已知两个数的积是,与其中一个平均分成4
1.比的意义:两个数相除又叫做两个数的比。比的后项不能为0。
5.比同分数的关系:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
7.化简比的方法:根据比的基本性质,把两个数的比化成最简单的整数比,叫做化简比,比的前项和后项必须是互质的整数。
例如:(1)1620=(16÷4)(20÷4)=455353
(2)=(×12)(×12)=109
6464
(3)1.80.09=(1.8×100)(0.09×100)
=1809=201
8.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。
9.按比例分配的解题方法:
(1)先求出总的份数,再求出各部分数量占总数的几分之几。
一个数(0除外)除以一个真分数,所得的商大于它本身。
一个数(0除外)除以一个假分数,所得的商小于或等于它本身。
一个数(0除外)除以一个带分数,所得的商小于它本身。
(四)解分数应用题注意事项:
1.找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。当句子中的单位“1”不明显时,把原来的量看做单位“1”。
2.找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。数量关系:单位“1”×对应分率=对应数量;对应量÷对应分率=单位“1”的量3.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
4.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量。
5.“已知一个数的几分之几是多少,求这个数”的解题方法:
1
工作时间
工作时间=1÷工作效率工作效率=
合作时间=工作总量÷工作效率之和第四单元圆
1、圆心:圆中心一点叫做圆心。用字母“o”来表示。半径:连接圆心和圆上任意一点的线段叫做半径,用字母“r”来表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,用字母“d”表示。
2.圆心确定圆的位置,半径确定圆的大小。3.在同一个圆内,所有的半径都相等,所有的直径都相等。在同一个圆内,有无数条半径,有无数条直径。
3
在同一个圆内,直径的长度是半径的2倍,半径的长
1
度是直径的一半。用字母表示为:d=2rr=d
2
7、圆的面积:圆所占平面的大小叫圆的面积。8.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=r×r=r9.圆的面积公式:s=r或者s=(d2)或者s=(c2)
10.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。圆的面积和正方形面积的比是:4。在一个圆里画一个最大正方形的,圆的直径的长度等于正方形的对角线的长度,正方形的面积=对角线×对角线÷2=直径×直径÷2。
11.在一个长方形里画一个最大的圆,圆的直径等于长方形的短边。
12.一个环形,外圆的半径是r,内圆的半径是r,它的面积是s=r-r或s=(r-r)。(其中r=r+环的宽度.)
13.环形的周长=外圆周长+内圆周长14.半圆的周长等于圆的周长的一半加直径。
半圆周长公式:c=d2+d或c=r+2r15.半圆面积=圆面积2公式为:s=r246.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。
例如:25%的意义:表示一个数是另一个数的25%。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
5、常用的分数、小数及百分数的互化
4
211
=0.5=50%=0.25=25%2431
=0.75=75%=0.2=20%4523
=0.4=40%=0.6=60%5541
=0.8=80%=0.125=12.5%5835
=0.375=37.5%=0.625=62.5%8871
=0.875=87.5%=0.1=10%81011
=0.0625=6.25%=0.05=5%1620xx
=0.04=4%=0.025=2.5%254011=0.02=2%=0.01=1%5016.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)
溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度
出粉率100%
合格率100%溶液(盐水)的重量×浓度=溶质(盐)的重量
溶质(盐)的重量÷浓度=溶液(盐水)的重量
出勤率实际出勤人数总人数100%
最常用的是用方程解浓度问题
11.折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
“八折”的含义是:现价是原价的80%;“八五折”的
含义是:现价是原价的85%
公式:现价=原价×折数(通常写成百分数形式)
利润=售价-成本
利润
利润率=×100%
成本
成数:表示一个数是另一个数十分之几的数,叫做成数。例如,今年的粮食产量比去年增产“二成”。“二成”即是十分之二,也就是今年的粮食产量比去年增加了20%。
12.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
13.应纳税额:缴纳的税款叫应纳税额。
14.税率:应纳税额与各种收入的比率叫做税率。
5
命中率成活率100%
出米率100%
数是单位“1”)
实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
一个数(单位“1”)×百分率
果安营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
16.储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
17.存款的类型:存款分为活期、整存整取、零存整取等方式。
18.本金:存入银行的钱叫做本金。
19.利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。
20.国家规定,存款的利息要按5%(根据题目要求数据计算)的税率纳税。国债的利息不纳税。21.利率:利息与本金的比值叫做利率。
22.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
23.银行存款利息的税金=利息×5%或=本金×利率×时间×5%
第六单元统计
扇形统计图的特点:可以清楚直观地反映各部份数量同总量之间的关系。
折线统计图的特点:不但能够看出数量的多少,还可以反映出数量增减变化的情况。
条形统计图的特点:能够清楚的看出数量的多少。
第七单元数学广角
(一)鸡兔同笼假设法公式:
解法1:鸡的只数=(兔的脚数×总只数-总脚数)
÷(兔的脚数-鸡的脚数)
兔的只数=总只数-鸡的只数
解法2:兔的只数=总脚数-鸡的脚数×总只数)
÷(兔的脚数-鸡的脚数)
鸡的只数=总只数-兔的只数
解法3:兔的只数=总脚数÷2总头数
鸡的只数=总只数兔的只数
(二)方程法:解设:兔子有х只,则鸡的只数是(总
补充一:图形计算公式
面积=长×宽长=面积÷宽
3三角形:面积=底×高÷2
三角形高=面积×2÷底三角形底=面积×2÷高
体积=棱长×棱长×棱长
8长方体表面积=(长×宽+长×高+宽×高)×2
体积=长×宽×高
补充二:其他应用题基本数量关系式
平均数问题:总数÷总份数=平均数
追及距离=速度差×追及时间追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
只数-х)。然后找出数量关系式列式即可。
六年级数学知识点总结冀教版六年级数学知识点总结北师大版篇二
数学商业上计算的需要、了解数与数之间的体系、测量土地面积及预测天文观念。下面是小编整理的关于冀教版四年级数学知识点总结,欢迎大家参考!
一、三位数乘两位数笔算
1、三位数乘两位数的计算法则:先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
2、三位数乘两位数,所得的积不是四位数就是五位数。
二、乘数末尾有0的乘法
1、末尾有0的乘法计算方法:先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
正方形的面积=边长×边长 正方形的周长=边长×4
长方形的面积=长×宽 长方形的周长=(长+宽)×2
①总价=单价×数量 单价=总价÷数量 数量=总价÷单价
②路程=速度×时间 速度=路程÷时间 时间=路程÷速度
一、容量的理解
1.容量是一个物体可以容纳液体的多少。
二、升和毫升之间的进率
1、1升(l)=1000毫升(ml 、ml)
2.计量水、油、饮料等液体时,一般用升或毫升做单位。
3、1毫升大约等于23滴水。
一、定义:由三条线段围成的封闭图形叫做三角形。
二、三角形的特征及分类
1、三角形任意两边之和大于第三边。
2、从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性。如:人字梁、自行车车架。
4、三个角都是锐角的三角形是锐角三角形。
5、有一个角是直角的三角形是直角三角形。
6、有一个角是钝角的三角形是钝角三角形。
7、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
三、等腰三角形、等边三角形
2、三条边都相等的三角形是等边三角形,三个角也都相等(每个角都是60°。)
3、有一个角是直角的等腰三角形叫做等腰直角三角形,它的底角等于45°,顶角等于90°。
5、等腰三角形的底角=(180°-顶角)÷2
一、不含括号的混合运算
1.四则运算中不含括号时,先做乘除再做加减。
二、含有小括号的混合运算
1、要先算小括号里面的。
三、含有中括号的混合运算
1.既有小括号,又有中括号,要先算小括号里面的,再算中括号里的。
第五单元 平行四边形和梯形
一、认识平行四边形
1、两组对边互相平行的四边形叫平行四边形,它的对边平行且相等,对角相等。
从一个顶点向对边可以作两种不同的高。底和高一定要对应。一个平行四边形有无数条高。
2、用两块完全一样的三角尺可以拼成一个平行四边形。
3、平行四边形容易变形(不稳定性)。生活中许
多物体都利用了这样的特性。如:(电动伸缩门、铁拉门、
伸降机
4、把平行四边形拉成一个长方形,周长不变,面积变了。
二、认识梯形
1、只有一组对边平行的四边形叫梯形。平
行的'一组对边较短的叫做梯形的上底,较长的
叫做梯形的下底,不平行的一组对边叫做梯形
的腰,两条平行线之间的距离叫做梯形的高
(无数条)。
2、两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
3、两个完全一样的梯形可以拼成一个平行四边形。
4、正方形、长方形属于特殊的平行四边形。
第六单元 找规律
1、搭配型规律:两种事物的个数相乘。(如帽子和衣服的搭配)
第七单元 运算律
1、乘法交换律:a×b=b×a 2、乘法结合律:(a×b)×c=a×(b×c)
3、乘法分配律:(a+b)×c=a×c+b×c(合起来乘等于分别乘)
4、乘法分配律衍生:(a-b)×c=a×c-b×c
第八单元 对称、平移和旋转
一、轴对称图形
如果一个图形对折后,折痕两边的部分能完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。
二、对称轴的条数
1、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
三、平移和旋转
1、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。
2、图形的旋转,先找点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。
第九单元 倍数和因数
1、4×3=12,或12÷3=4。那么12是3和4的倍数,3和4是12的因数。(倍数和因数是相互存在的,不可以说12是倍数,或者说3是因数。只能说谁是谁的倍数,谁是谁的因数。)
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
3、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
4、一个数最大的因数等于这个数最小的倍数(都是它本身)。
5、是2的倍数的数叫做偶数。(个位是0、2、4、6、8的数)
6、不是2的倍数的数叫做奇数。(个位是1、3、5、7、9的数)
7、个位上是2、4、6、8、0的数是2的倍数,个位上是0或5的数是5的倍数。
8、既是2的倍数又是5的倍数个位上一定是0。(如:10、20、30、40……)
9、一个数各位上数字的和是3的倍数,这个数就是3的倍数。10、一个数只有1和它本身两个因数的数叫素数(或质数)。
10、 2是质数中唯一的偶数。(所以“所有的素数都是奇数”这一说法是错误的。)
13、哥德巴赫猜想:任何大于4的偶数都可以表示成两个奇素数之和。如8=3+5,10=5+5,12=5+7等等。
14、100以内的素数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、71、73、79、83、89、97。(共25个)
第十单元 用计算器探索规律
1、积的变化规律:
①一个因数不变,另一个因数乘或除以几(0除外),积也跟着乘或除以几(0除外)。
②如果一个因数扩大几倍,另一个因数缩小相同的倍数,那么积不变。
②被除数乘(或除以)一个数,除数不变,商也乘几(或除以)几。
1.五年级下册数学冀教版知识点总结
2.冀教版六年级科学下册知识点总结
3.冀教版三年级科学下册知识点总结
4.2017冀教版小升初数学试卷及答案
5.冀教版小升初数学试卷及答案
6.冀教版小升初语文试卷
7.冀教版小升初英语试卷及答案
六年级数学知识点总结冀教版六年级数学知识点总结北师大版篇三
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!
1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
六年级数学知识点总结冀教版六年级数学知识点总结北师大版篇四
一、取得的主要成绩
通过一学期的辛勤工作以及师生的共同努力,顺利完成了本学期的全部教学内容,并取得了良好的成绩。
二、采取的有效措施
首先,开学之初,我认真钻研了教材、研读了教学用书,仔细研究了教材重难点及注意点和关键,了解了教材前后相关的知识体系,研究了班级情况,掌握了学生的知识结构水平,思想动态,家庭情况及学习情况和学习兴趣情况。针对了解的情况,写出了符合班级情况的教案,并注意分析了上课得失,并适当写上了课后小记,以便知识的弥补和信息反馈。认真上好了每一节课,认真批阅了学生的作业。在课前,我总认真熟记教案内容,分析可能出现的情况;课堂上,有计划、有目的地进行教学,并遵循教学基本原则,因材施教,因势利导,面向全体学生,面向学生各个方面,努力提高了随堂课的教学质量。课后,我总是留给学生适量的适度的练习题,对学生的作业,我做到了认真及时、全批全改。有的还适时注明批评,激励学生学习的兴趣。
其次、做好每一次的单元测验与课后辅导工作。本学期教学工作中,教学完每个单元,就立即反馈检测,对学生知识掌握情况进行单元测验,测验后我认真做出成绩单,对学生成绩进行认真细致的分析,对成绩好的学生进行表扬;对成绩不理想的学生及时找出原因做相应的处理。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,同时加大了对后进生的辅导的力度。对后进生的辅导,并不限于学生知识性的辅导,更重要的是学生思想的辅导,提高后进生的成绩,首先解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。
第三、利用网络资源进行学习
现如今办公室、家庭都有电脑了,我注意利用电脑进行学习。在上教研课时善于从网上搜集各种教学信息,比如在教学“位臵的确定”一课时我看了好多网上发表的教学设计、课件、说课,还看了网上的示范课录象,根据我班学生的具体情况设计我的教案、课件。课上学生兴趣盎然,各抒己见,积极性很高,得到了教研组同志们的好评,并收到了良好的教学效果。同时我注意增强上课技能,提高教学质量,使讲解清晰化,准确化,条理化,做到线索清晰、层次分明、言简意赅。在课堂上也存在一些问题,今后要加强师生交流,语言还得更有激情些,让学生学得轻松愉快。
1、将学过的数学公式,性质、概念等必须让学生熟记。这样才能运用它们准确解答数学题,正确解决数学问题。如各种图形的面积公式,周长公式,体积公式、还有利息公式、出勤率、比例尺等,又如比例的概念,比例的基本性质等知识必须让学生记会。
2、学好数学基础知识与基本技能是提高数学成绩的前提。学生只有掌握了基础知识,熟练了基本技能和解题技巧,才能解答稍难的应用题,也才能灵活的解决实际问题,且能做到一题多解。
3、通过“兵教兵”形式将有关的数学知识适当过关,这样有利于提高数学平均成绩。如本学期解方程,解比例、简便运算等知识是必考的知识,就得人人过关。
4、在课堂教学中,教师必须用亲切,生动的语言将抽象的数学知识具体化,这样才能激发学生学习数学知识的兴趣,有了兴趣学生才能主动的学习数学,也才能提高数学成绩。
5、在教学工作中注意密切联系社会生活,学以致用,举一反三。
6、复习阶段按--数的认识----数的运算----量的计量----比和比例----式与方程---图形的认识与测量---图形的位臵与变换----统计与可能性---策略与方法,9个模块,对每个模块的概念,重点知识点,结合课本练习。
7、在学圆柱和圆锥时,学生对于它们的展开图比较抽象,这时要充分使用教具,把抽象的知识变的更加形象,让学生更容易理解。
8、将立体图形--如:圆柱切开后如何计算它们的体积。 9、将一个圆柱展开后,是一个正方形,它的底面的周长等于圆柱的高。
10、对于五年级下册的统计与可能性---至少称几次能找出一个物体?---也同样是复习的一个知识点。
四、存在的问题与主要原因
1、“先学后教,当堂训练”的教学实践力度不够,课堂教学语言艺术性有待进一步提高。
2、对培养优秀生的拔尖工作和中等生的培优的工作做得欠缺一些。
一份耕耘,一份收获,教学工作中苦乐相伴。总体而言,这学期的教学有得有失,对于“得”我会把它当作自己的财富,对于“失”会在今后的教学中努力去改善,力争把教学工作做得更好。总体感觉本学期的工作较过去有所长进,今后我将一如既往地勤勉,务实地工作,将再接再厉,争取把工作做得更加扎实有效,让各级领导放心,让家长满意,让社会肯定,让学生喜欢。
六年级数学知识点总结冀教版六年级数学知识点总结北师大版篇五
1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。
2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
(1).比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看位,位上的数大,那个数就大;位上的数相同,就看下一位,哪一位上的数大那个数就大。
(3). 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

一键复制