总结是一个自我检视的过程,通过总结,我们可以更好地认识自己并找到进步的方向。清晰明确自己总结的对象和内容,以便更好地组织文章结构。请看下面一些总结范文,希望能给大家写作提供一些思路。
四年级数学植树问题教学设计篇一
上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席、国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢老师们指导。
四年级数学植树问题教学设计篇二
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
江口小学。
20xx.6。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
四年级数学植树问题教学设计篇三
上午我上了四年级数学《植树问题》结合自己上课情况和市三小教研员,橡胶所教研员,和本学期邢教研员的评价,做课后反思如下,我认为这节课有以下几点做得比较好:
创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前导入我用学生了解的主席,国家总理植树活动,让学生知道植树的重要性,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。利用线段来分析给学生以清楚表示,找出规律。
在处理教材时我把例题改为条件开放的植树问题,例题的数学有点大,先找出小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己动手拭操作,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。给学出示建公车站,和生活中钟表问题。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。
这节课充分利用了多媒体设备,所以课堂容量较大,时间的点紧张,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。谢谢各们老师指导。
四年级数学植树问题教学设计篇四
教学。
设计由本站会员“夜色恋人”投稿精心推荐,小编希望对你的学习工作能带来参考借鉴作用。
作为一位无私奉献的人民教师,可能需要进行教学设计编写工作,借助教学设计可以提高教学效率和教学质量。如何把教学设计做到重点突出呢?以下是小编精心整理的小学人教版四年级数学植树问题教学设计,仅供参考,欢迎大家阅读。
教学目标分析(结合课程标准说明本节课学习完成后所要达到的具体目标):
知识技能目标:
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
2、渗透数形结合的思想,培养学生借助图形解决问题的意识;
3、培养学生的合作意识,养成良好的.交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
学习者特征分析(结合实际情况,从学生的学习习惯、心理特征、知识结构等方面进行描述):
通过平时的观察,我发现四年级学生的思维仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。但这种能力不是那么强,在学习中很难独立的完成学习任务,但学生的合作意识已经有了很大的提高。能在学习中在教师的引导下积极参与学习,完成学习任务。适当的鼓励是激励学生学习,克服困难的最好方法。在生活经验方面,学生们看到过“道路两旁每隔一定距离会种有树”,但是,在这样的现象中包含哪些数学概念他们是不清楚的,需要教师针对此予以明确;在数学知识方面,他们知道“依此类推”和“除法的意义”,像“100米的小路,每隔5米栽一棵”,他们可以通过计算和画图的方法解决,只是对这些量之间存在的数量关系还有待进一步探究。
教学过程(按照教学步骤和相应的活动序列进行描述,要注意说明各教学活动中所需的具体资源及环境):
一、创设情景,激发兴趣。
1、猜谜导入揭题。
师:“两棵小树十个杈,不长叶子不开花。能写会算还会画,天天干活不说话。”(手)。
师:生活中“间隔”随处可见,比如,每相邻两棵树之间的距离,也是一个间隔,这节课我们就一起来研究和解决一些简单的、与间隔有关的问题——植树问题。(板书课题:植树问题)。
【设计意图】以学生熟悉的手为素材,初步感受手指数与间隔数有的关系,使学生感受数学与生活的密切联系,在不知不觉中展开对数学问题的探索,激发探求植树问题的欲望。
二、经历探究,发现规律。
1、激趣引入,启发探究积极性。
(课件出示)出示江口小学为绿化环境的招聘启事及设计要求。
招聘启示。
学校将进行校园环境美化,特诚聘环境设计师一名。要求设计植树方案一份,择优录取。
设计要求:
在一条长20米的小路一边等距离植树,两端要栽。
【设计意图】通过招聘启示让学生设计植树方案的出发点是让所有参与者都能平等的、积极主动的参与到学习的全过程中,在参与中学习和构建新的知识、形成能力。
小学四年级数学植树问题教学设计如果还不能满足你的要求,请在本站搜索更多其他小学四年级数学植树问题教学设计范文。
。
四年级数学植树问题教学设计篇五
教学。
设计及反思教学目标1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。
2.进一步培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力以及抽取数学模型的能力。
难点:培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。
两端都不栽时,棵数比间隔数少1;
一端栽一端不栽时,棵数和间隔数相等。
师:在解决复杂问题时,我们是怎么做的?生:可以先给出一个猜测,要判断这个猜测对不对,可以从简单的事例中发现规律,再应用找到的规律来解决原来的问题。
师:同学们对已学知识掌握得很好!今天这节课,我们要一起来研究植树问题中的另一种情况。
二、探究新知1.课件出示教材。
第1。
08页例3。
师:这道题与前面学习的植树问题相比,有什么相同点和不同点?生:不同之处在于前面学习的是在线段上植树的问题,这道题是在一个圆形周围植树。(教师追问:线段是怎样的?圆形又是怎样的?)线段是直的,圆形是一条曲线。(教师追问:圆形是一条什么样的曲线?)逐步引导得出:图形是一条首尾相接的封闭曲线。
生:相同之处都是已知长度和间隔距离。
2.师:你能联系已经学过的知识,自主解决“一共要栽多少棵树”这个问题吗?学生独立思考,讨论汇报。
师:大家想到了用什么方法来解决问题?(画图。)120m的长度太长了,怎么办?(先用简单的数据试一试。)生:以周长为40m的圆为例,通过画图得知,能栽4棵树。
师:如果把圆拉直成线段,你能发现什么?生:相当于在线段上植树的问题中“一端栽一端不栽”的情况。
师:利用发现的规律,你能解决例3的问题吗?生:120÷10=12(棵)。
3.师:谁能完整地概括一下刚才的发现?
总结。
:在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于在线段上植树问题中的“一端栽一端不栽”的情况。
三、
巩固练习1.教材第108页“做一做”。
师:你能利用题目中的数据编出一道在线段上植树(一端栽一端不栽)的问题吗?学生练习,交流汇报。
2.一条项链长60cm,每隔5cm有一颗水晶。这条项链上共有多少颗水晶?师:这题与我们学习的植树问题的知识有关联吗?属于哪一种情况?(在一条首尾相接的封闭曲线上植树。)你能说说在这道题中谁与谁“一一对应”吗?(水晶的颗数与间隔数。)60÷5=12(颗)答:这条项链上共有12颗水晶。
四、课堂小结通过这一节课的学习,你有什么收获?跟大家交流一下。
根据学生的回答,强调:在一条首尾相接的封闭曲线上植树,所需棵数和间隔数“一一对应”,相当于在线段上植树的问题中“一端栽一端不栽”的情况。
教学反思学生已经有了“在线段上植树”的学习经验,在出示情境图引导学生比较相同点和不同点之后,教师放手让学生自主探究。在概括归纳的环节,注重模型的对比和沟通,通过两种不同的方式,自然地得出在一条首尾相接的曲线上植树所需棵数与间隔数“一一对应”的结论,相当于在线段上植树中“一端栽一端不栽”的情况。
。
四年级数学植树问题教学设计篇六
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
多媒体课件、圆形纸片若干。
同学们,今天我们一起来研究一个有趣的数学问题。
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
5、研究烙三张饼所需要的时间。
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
7、寻找规律。
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的'时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题。
师:这就是我们这节课要研究的烙饼问题(板书课题)。
1、求烙40张饼和41张饼所需的时间。
2、把上面烙一面饼的时间“3分钟”,改为“4分钟”、“5分钟”,学生解答。
[设计意图:变式练习更有利学生思维的深入理解。]。
3、课本105页做一做第2题。
[设计意图:同种类型的习题有助于培养学生举一反三的能力。]。
师:通过这节课的学习,你有什么收获?
小结:我们做任何事情的时候都要开动脑筋,寻找最佳方案,合理安排时间,这样就能取到事半功倍的效果。我希望同学们都能做一个勤于思考、珍惜时间的好孩子。
四年级数学植树问题教学设计篇七
教学内容:
人教版五年级上册数学第七单元数学广角植树问题
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题
教学难点:
理解“间距数+1=棵数,棵数-1=间距数
教学过程:
1、教学“间隔”的含义
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)
3、理解间隔数,引入课题。
在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)
1、出示招聘启事
在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。
2、出示例题,理解题意:
师:(课件出示例题。)
(课件解释关键词语,加深学生理解)
师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。
3、出示合作要求。
(1)教师讲解小组合作要求。
(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可
以用不同的形式表达)
(3)教师巡视,指导学生小组合作。
(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。
(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。
4、以小组为单位探究棵数与间隔数间的关系:
(1)数一数:数出棵数和间隔数。
(2)比一比:比较出棵数和间隔数之间的规律。
两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。
只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。
两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。
1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?
四年级数学植树问题教学设计篇八
今天我主评的课是查老师执教的《植树问题》的第一课时,植树问题是人教版《义务教育课程标准实验教科书》四年级下册第八单元《数学广角》的教学内容。这一单元主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再利用发现的规律来解决生活中的一些简单实际问题。植树问题是情况较为复杂的问题,解决这一教学内容本身具有很高的`数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。查老师执教的这节课的目的就是要向学生渗透把复杂问题简单化的数学思想。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法,植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段,由于路线的不同、植树要求的不同,路线被分成的段数和植树的棵数之间的关系也就不同,它们中间都隐藏着总数和间隔数之间的关系问题,不同的情况,总数和间隔数之间的关系也就不同。如何引导学生发现、理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题,是查老师执教的这一堂课的主要教学目的。查老师的这节课无论是在教材的驾驭上,在教学方法的选择上,还是在教学理念的更新上,及在教学模式的探讨上都给我留下了深刻的印象,这就是我在听课这么长的时间后仍选择主评这节课的主要原因。下面就从以下几个方面谈谈我听完这节课后的几点感受。
教学内容是教学活动的素材和依托,是实现教学目标的重要保证,教学内容安排的合理可以有效地提升教学目标,达到理想的教学效果。植树问题可分为两大方面的内容,一是在直线上植树,二是在封闭图形上植树。直线上植树就有三种不同情况:两端都种、两端都不种、一端种一端不种,查老师根据四年级学生的认知实际,从学生的实际情况出发,所有的学习材料都来源于学生的生活实际,降低了学生认知的起点,激发了学习的兴趣,同时选定将两端都种的情况作为第一课时教学目标来完成,定位很准确,关注了学生学习的起点,符合中年级学生的认知规律。如果一节课将直线上植树的三种情况一起来探究学习,必然会造成知识容量大,学生学得累,教师教得累,教学效果也不如意的尴尬后果。
导入新课时,查老师让学生猜这样的一个谜语:两棵小树十个杈,能写会算不说话。当学生猜出是“手”后,查老师让学生看自己的手掌,然后告诉学生,我们每个人的手里都蕴藏着许多有趣的数学知识,张开小手,五个手指中间有四个间隔,在数学上把这个“4”叫“间隔数”,五个手指就表示五棵树,这就是我们今天要研究的有关植树问题的知识,从而很自然地导入到新课。这样的导入,既新颖有趣,激发了学生学习新课的热情,又使学生充分地体会到数学问题来源于生活。在实践应用环节中查老师让学生说一说生活中还有哪些问题类似于植树问题这样的现象,使学生再次感受到生活中处处有数学。在练习设计中,也是通过出示图片让学生用数学的眼光观察生活,如8个同学排队有几个间隔,6面彩旗有几个间隔,一件衬衫钉了8粒纽扣有几个间隔等内容,让学生利用所学的规律解决生活中的数学问题,使学生进一步感受到数学知识源于生活,应用于生活,从而使学生深刻地感受到数学的应用价值,有效地激发了学生的学习兴趣。
本节课的教学目标是理解和掌握在一条线段上植树问题的规律,并且会利用这一规律正确解决类似的数学问题。查老师在教学过程中,自始至终都围绕着这一目标展开教学。首先,让学生通过自主探索、交流,归纳、总结等方法,使学生发现在两端都栽的情况下,植树问题的“棵树=间隔数+1”,而且,让学生说一说为什么要加上1,这个“1”表示的是什么,从而使学生明确这个“1”就是指末端的那棵树,明确了规律,目的是为了让学生正确地运用这一规律解决类似的数学问题,而植树问题的题型又是灵活多变的,生活中的许多问题都可以归结为用植树问题的方法来解决。因此,查老师在学生解决问题的过程中,十分重视学生对教学目标的理解和灵活运用。如练习这样一道题:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?当学生独立解答汇报后,查老师不是就此结束了事,而是再让学生说说每道算式的意义,12÷2=6(个)表示有6个间隔,6+1=7(个)表示一共有7个车站,然后,再进一步提出问题帮助学生分析、理解、掌握植树问题的规律。相邻的两站距离在植树问题中表示什么?求一共有几个车站就是求什么?这道题的关键是必须要知道先求出什么?怎么求?在一问一答中,学生的思路更加清晰,对植树问题这一规律有了更深一层的理解和把握,运用起来也就得心应手了。
数学思想方法就是数学的灵魂,植树问题的目的就是向学生渗透复杂问题从简单方法入手的思想。本节课的重点是发现、理解和掌握解决植树问题的规律,即植树问题的公式推导。在这一环节的教学过程中,查老师首先出示的是这样的一道例题:同学们在全长100米的小路一边栽树,每隔5米栽一棵(两端要栽)。一共要多少棵树苗?在学生自主探究独立解答完成这道题后,查老师为了能让学生在此基础上探索发现植树问题的规律,用课件出示线段图,一棵树对应一个间隔,一棵树对应一个间隔,这样一个一个的出示,很麻烦,不利于渗透把复杂问题简单化的数学思想。于是,查老师就把刚才的例题中的100米的小路改成20米、25米、30米,在总长发生变化而间隔的长度不变的情况下,让学生利用手中的学具摆一摆,数一数,通过动手操作,观察,再用多媒体课件进行演示,使学生很快就能发现在两端都栽的情况下,间隔数总是比所栽的棵数少1,从而得出“间隔数+1=棵数”这一规律,并且还明确了为什么要加1,这个“1”表示的是什么的道理。通过教师的有效引领和学生的自主探究,使学生感受到在数学学习中,可以把复杂的问题转化为简单的问题来解决,从而有效地渗透了复杂问题简单化的数学思想。
查老师是我们铜陵市的名师,名师自有名师的风范,查老师在课堂上极具亲和力,教学中,查老师用女性特有的细致和温柔启发和激励学生,既关注细节,又注重评价,使她的课堂激情洋溢,精彩纷呈,掌声不断,高潮迭起。
(1)、关注学生学习过程中的每一个细节。
细节决定成败,关注细节就是要关注学生课堂学中习中的每一个细枝末节。查老师在这堂课中,特别关注学生的学习过程和思维过程,如,学生在独立练习时,查老师首先让学生判断是否属于两端都栽的问题,并且提问你是从哪个地方看出来的,既关注学生的学习结果,更关注学生的思维过程;当学生在练习时,查老师还不断地巡视,发现学生在解题过程中遇到了困难,就及时地提示学生用画线段图的方法,进行分析,给学生以解题方法的提示。另外,查老师还特别关注学生学习习惯方面的每一个细节,哪怕是与这节课教学内容无关的细节,查老师也十分关注。如,当学生回答问题语句不完整时,查老师要求学生要把一句话说完整;当学生板演算式忘记写单位名称时,查老师提醒学生注意书写算式的完整性;当学生板演不工整时,查老师又提醒学生书写时要注意规范工整;当学生口头答题忘记说答语时,查老师还是及时地提醒学生要注意答题的完整性。查老师对教学中的每一个细节都如此地关注,无疑为我们在关注细节这方面做出了榜样。
(2)注重评价方式的多样化。
在查老师的课堂上,始终洋溢着民主平等的教学氛围,特别是查老师敢于放下架子,站在与学生平等的高度,注重对学生的评价,拉近了老师和学生的距离,融洽了师生之间的感情,激发了学生的学习热情和学习兴趣,使得学生在学习过程中能够独立思考,大胆发言,积极创新,学习氛围浓郁。教学中,查老师善于把握学生的心理,对学生实施有效的评价,查教师对学生的评价,既关注学生知识与技能的理解和掌握,又关注学生情感与态度的形成和发展;既关注了学生的学习结果,又时刻关注了学生在学习过程中的发展变化,评价方式多样化。当学生回答问题正确时,查老师就用激励性的语言从正面加以肯定;当学生回答问题精彩时,查老师就让全体学生用热烈的掌声给予鼓励;当学生回答问题非常完整时,查老师不仅用语言进行表扬,并且还投以赞许的目光;当学生回答问题不全面时,查老师先表扬其正确的部分,再委婉地指出其存在的不足,有效的维护了学生的自尊。
本节课练习设计紧扣中心,突出了知识的强化应用,把应用意识的培养和思维的训练贯穿始终,努力让学生利用所学知识解决类似植树问题的不同题型。在题型设计上也由易到难,遵循了循序渐进的原则。有求棵树的,如:5路公共汽车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?有求总长的,如:园林工人在公路一侧栽树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?有求每段长度的,如:广场上的大钟5时敲5下,8秒钟敲完。12时敲12下,需要多长时间?这些都较好地体现了思维的训练和应用意识的培养。
值得商榷的是:
1、在探索植树问题的规律时,同学们探索的是在间隔的长度不变,而总长不断变化的情况下,得出的“间隔数+1=棵数”的这一规律。可否再让学生通过摆一摆、画一画,在总长不变而间隔的长度发生变化的情况下,得出植树问题的规律。如,设总长为20米,间隔的长度可分别为1米、2米、4米、5米、10米、20米,让学生多次从不同结果中发现棵数与段数之间的关系,应用不完全归纳法得出间隔数和棵树之间也存在着同样的规律,通过对不同条件的亲历探讨,从而使学生坚定了这一规律的正确性。
2、课堂教学的开放程度不够,例题可否设计为在20米长的小路一边种树,怎样种?需要几棵数?让学生设计植树的方案。使学生在老师提供的这一开放性的、富有挑战性的题目中,大胆设想,开放思维,充分展示自己的聪明才智,从而体验成功和快乐。
以上两点只是我个人一点不成熟的建议,如有不妥,请各位老师批评指正。
四年级数学植树问题教学设计篇九
本册教材的数学广角主要是渗透有关植树问题的思想方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第2课时,是探讨关于一条线段并且两端都不栽的情况。
“两端都不栽”与“两端都栽”的区别是比较明显的,可以借助线段图帮助学生建立两者的表象,再正确建立数学模型。
教学目标。
1、建立“树的棵数=间隔数-1”的数学模型;能利用数学模型解决简单的实际问题。
2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的思想方法。
3、体会数学模型的生活意义与作用,体验到学习的`喜悦。
学习重点:建立“树的棵数=间隔数-1”的数学模型。
学习难点:“两端都不栽”与“两端都栽”有什么联系与区别。
预设过程。
一、复习两端都栽。
在一条12路的一侧种树(两端都种),每2米种一棵,共需种几棵?
1、揭题:植树问题。
2、呈现问题,请学生解决。新课标第一网。
3、反馈解法,强调“两端都种”与“间隔数+1”。
二、研究两端都不栽。
在一条12路的一侧种树(两端都不种),每2米种一棵,共需种几棵?
1、提出研究课题:要是两端都不种呢?
2、呈现问题,请学生思考后试解。
3、反馈解法,强调“两端都不种”与“间隔数-1”。
4、比较:“两端都种”与“两端都不种”有什么不同?
三、练习。
1、画示意图,完成p118例2,注意“两端都不种”与“两旁都种”。
2、画示意图,完成做一做1,注意“两端都种”与“两旁都种”。
3、画示意图,完成做一做2,发现“锯的次数=段数-1”。
4、完成补充题,知道“四层楼三个间隔”。
四、总结。
四年级数学植树问题教学设计篇十
教学内容:
一个因数末尾有0的乘法。
教学目的:
使学生掌握第一个因数末尾有0的乘法的计算方法,能够正确地计算.。
教学过程:
一、复习。
教师先把教科书中的复习题按下面的格式写在黑板上.。
20×312×4200×3。
120×420xx×31200×4。
二、新课。
1.教学例9.。
教师出示例题350x3,提问学生:这道题怎样用笔算?
教师再提问:还有更简便的算法吗?
教师接着出示2500x3,让学生用简便方法试算.。
集体订正时,让学生说一说怎样计算简便.。
2.做例9下面“做一做”中的题目.。
三、课堂练习。
1.做练习六的第1题。
有多少,哪些学生还没有做完.然后集体订正.。
3.做练习六中的第3题.。
学生做前教师提问:“各是多少”是什么意思?要求的是什么?
4.做练习六中的第4题.。
让学生独立用竖式计算.教师行间巡视,个别辅导.然后集体订正.。
5.做练习六中的第5题.。
让学生独立解答.教师行间巡视,个别辅导.。
将本文的word文档下载到电脑,方便收藏和打印。
四年级数学植树问题教学设计篇十一
教学目标:
1、通过探究发现一条线段上两端要种的植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的.方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学过程:
一、创设情景。
1、我们来看这幅图(/|/|/|),提问:人数与杠杆数有什么关系?
边板书边说:“一个人后面一根杠杆,一个人后面一根杠杆,一个人后面一根杠杆,人数与杠杆数一一对应,人数=杠杆数”。
2、我们再来看这幅图(/|-|-|),提问:他们在抬杠杆时出现了什么问题?
请大家讨论一下,为什么左边的杠杆没有抬起来?怎样才能把左边的杠杆抬起来?
1)增加1人(动画演示)。
提问:人数与杠杆数有什么关系?
板书:人数=杠杆数+1。
提问:你能说说这两幅图的区别吗?
板书:两端有人一端有人。
2)首尾相接(动画演示)。
提问:人数与杠杆数有什么关系?
板书:人数=杠杆数。
提问:如果有4人,怎样才能把4根杠杆抬起来?5人呢?
小结:围成一个封闭图形时,人数=杠杆数。
二、探究新知。
1、p.117例题1。
1)学生读题。
审题:每隔5米栽一棵,怎么理解?(每段5米)两端要栽,说明什么?
提要求:请同学们先独立解题,再由小组讨论解题思路以及理由。
汇报:先算什么?
提示:如果我们一时想不清要不要加1,我们怎么办?我们可以先把数据改成小一点,再画线段图,找出规律再解答。
学生画出线段图后说说规律。
2)对比后揭示课题:
我们来对比一下抬杠杆与植树有什么联系?
树的棵数相当于什么?
两端都有人相当于什么?
间隔数相当于什么?
教师小结:我们把研究间隔数与棵数之间的关系的问题称为植树问题。
3)改编题:
如果把“一边植树”改成“两边植树”,怎么解答?
你准备先算什么?
学生独立解题后交流答案。
三、尝试练习。
1、p.118做一做。
学生读题后提问:每隔6米,就是什么?
学生看线段图中的第一棵和最后一棵,说说是两端都种还是一端种?先算什么?
独立解答。交流答案。
2、出示p.122t.2.3.1。
让学生独立解答。
汇报交流。
重点强调:t.1。
课件演示5时的敲钟过程,让学生说说什么时候敲完,敲的下数相当于植树问题中的什么?敲钟的时间相当于什么?再说说解题思路。
四、拓展练习。
出示题目:“起点至第一栏的距离为13.72米,中间共有10个栏,栏间距离为9.14米,最后一栏至终点的距离是14.02米。你们知道他从起点到终点跑了多少米吗?”
出示线段图后,学生独立解答后交流。
五、课堂总结。
学生说说有什么收获。
教师补充强调:植树问题中,有四种不同的类型,其中当两端都种时,棵数=间隔数+1。
四年级数学植树问题教学设计篇十二
教学内容:
教学目标:
知识技能目标:
1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系。
2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。
过程目标:
1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力。
2、渗透数形结合的思想,培养学生借助图形解决问题的意识。
3、培养学生的合作意识,养成良好的交流习惯。
情感目标:
1、通过实践活动激发热爱数学的情感;
2、感受日常生活中处处有数学,体验学习成功的喜悦。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
理解“间距数+1=棵数,棵数-1=间距数。
教学过程:
一、设计情景、引入课题。
1、教学“间隔”的含义。
师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)。
2、举例生活中的“间隔”
师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)。
3、理解间隔数,引入课题。
在一条路上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)。
二、探索新知,探究规律。
1、出示招聘启事。
在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。
2、出示例题,理解题意:
师:(课件出示例题。)。
(课件解释关键词语,加深学生理解)。
师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。
3、出示合作要求。
(1)教师讲解小组合作要求。
(2)学生4人小组开始合作学习,利用学具设计出植树方案。(可。
以用不同的形式表达)。
(3)教师巡视,指导学生小组合作。
(4)小组作品展示,及小组评价。教师及时点评学生的设计方案,并及时鼓励学生。
(5)引导学生总结出在实际生活中的植树情况可以分为三种:第一种两端都栽,第二种:只栽一端,第三种:两端都不栽。
4、以小组为单位探究棵数与间隔数间的关系:
(1)数一数:数出棵数和间隔数。
(2)比一比:比较出棵数和间隔数之间的规律。
两端都要栽时,植树的棵数比间隔数多1(棵数=间隔数+1)。
只栽一端时,植树的棵数与间隔数相同(棵数=间隔数)。
两端都不栽时,植树的棵数比间隔数少1(棵数=间隔数-1)。
三、课堂小结、反馈练习。
1、公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?
四年级数学植树问题教学设计篇十三
2.教学生尝试着画视图进一步巩固空间观念。
尺
一、谈话揭题:
上节数学课。
我们学习了"观察物体"。
说说你学会了哪些知识?
板书:视图。
出示两张图。
问:你觉得这两张图有什么不同?
指出:我们在观察一个正方体的时候,最多只能看到3个面:前面、右面和上面。
图1画的就是我们平时能看到的情况,而图二是在图1的基础上添上了3条虚线,这样就使图看起来立体的效果更强,可以完整地看到正方体的六个面,像这样的图,我们可以叫它"透视图"。
我们要会观察视图,大家一起动手画一个正方体。
二、练习:
说一说先完成书上的问题。
问:谁能像这样子也来提问考靠大家?
随学生的`提问。
其他同学解答。
注意学生在出题的时候。
要说清楚是从哪个面观察。
得到的是怎样的排列的几个正方形?
你能用几个小正方体搭出下面的楼房模型吗?
追问:图2看到的是3个正方体。
是不是真的就3个?
观察这类图要注意什么问题?
3.先数一数各有几个正方体。
再摆一摆。
(图略)提醒:图2和图3都是2层的。
2层的视图要注意上面正方体的下面虽然看不到,但肯定是有的一定要数进去。
4.思考题:
下面的几张照片分别是谁拍的?连一连连完后请学生说说自己在连的时候是怎么考虑的?
连完后有什么发现?
注意让学生发现相对的面。
如前面和后面左面和右面在观察的时候,上面多的那一块的方向是正好相反的。
三、尝试画较为复杂的视图。
1.用4个同样大小的小正方体摆成从右面看到的是。
2.用4个同样大小的小正方体摆成从右面看到的是。
四年级数学植树问题教学设计篇十四
1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的情况下间隔数与棵数之间的关系。
2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。
任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。
任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。
【学习重点】:发现棵数与间隔数的关系。
【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。
【教学准备】:课件、小组学习单。
【教学过程】:
一、导入新课。
1、猜谜语,直观认识间隔。
新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)。
哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。
手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)。
我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)。
你发现什么了吗?(生说)。
的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。
二、探究规律实现目标。
1、例题探究。
说起植树问题我们就先从植树谈起吧。请看例题。
a、从题中你能知道哪些信息?谁来说一说?生说,师画。
师小结:
一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
b、算一算,一共要栽多少棵树?反馈答案:
方法1:1000÷5=200(棵)。
方法2:1000÷5=200200+2=22(棵)。
方法3:1000÷5=200200+1=21(棵)。
疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)。
三、自主探究,发现规律。
1、化繁为简探规律。
是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)。
是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。
四年级数学植树问题教学设计篇十五
1.在具体问题情境中,感受求平均数是解决一些实际问题的需要,通过操作和思考体会平均数的意义,学会并能灵活运用方法求简单数据的平均数(结果是整数)。
2.能运用平均数的知识解释简单的生活现象,解决简单实际问题,进一步积累分析和处理数据的方法,发展统计观念。
一、设疑引欲,提出问题。
师:体育课上,同学们在进行套圈比赛,一起来看看。比赛分男生一组,女生一组,规定每人套15个圈。
师:(出示前三轮比赛成绩)这是前三轮比赛的结果,你觉得哪组套得更准些?为什么?
(学生讨论、交流)。
师:比赛继续进行。(课件继续出示)现在哪个组套得更准些呢?(„„)我觉得女生组套得更准些。因为她们套中的个数多呀!
(学生讨论、交流)。
2、移多补少,平均数的意义。
师:指名汇报,显示移多补少的过程,结果:男生平均每人套中7个。
师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。(板书:移多补少)。
师:这里的“7”是什么意思?是指“王宇”套中的个数吗?(学生讨论、交流,结合统计图汇报)。
师(出示女生套圈统计图):你估计女生平均每人套中几个?如果用一条线像表示男生平均每人套中个数那样表示女生的,你觉得这条线可能放在哪儿?(学生思考、汇报)出示一条线置于“10”的位置,能放在这儿吗?为什么?出示一条线置于“4”的位置,能放在这儿吗?为什么?你觉得她们的平均数在哪些数之间?(4~10)。
师:现在怎么办?学生汇报“移多补少”,课件演示过程。
生:有的比平均数多(师:多了几个?)有的比平均数少?(师:少了几个?)(课件分别演示比平均数多和少的直条)。
师:比平均数多的个数和比平均数少的个数怎么样?(相等、一样多)师:会不会是一种巧合呢?我们再来看看女生组的情况。谁来说说对这个“6”,你是怎样理解的?是不是每个女生实际都套中6个,实际是怎样的?看着屏幕一起来说说。(根据学生回答,课件演示女生比平均数多和少的直条)。
师:平均数会比这里最大的数大吗?师:会比最小的数小吗?
师:对了,平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以它在最小数和最大数之间。其实,这是平均数的又一个重要特点。利用这一特点,我们可以大概地估计出一组数据的平均数。
3、探索计算方法。
(1)师:除了移多补少的方法,你还有其他方法求出平均数吗?(学生汇报)。
师:好办法,给这种方法也取个名字:求和均分。师:能列出算式吗?(6+9+7+6=28(个))。
师:28表示什么?谁来说一说。(男生组套中的总个数)师:为什么要除以4?(男生有4人)师:道理讲得很清楚。
(2)师:下面请大家自己算一算女生组的平均数师:谁来说说你的方法。(10+4+7+5+4=30(个))师:(根据学生回答板书,指着30)30个表示什么?师:(指板书)为什么这里用总数除以的是5而不是4?师:解释得真好。
学生独立完成,指名汇报交流。
指出:在实际操作中,我们可以灵活选择合适的方法解题。
2、刚才我们知道了,超出平均数的部分和不到平均数的部分一样多。把握了这一特点,我们可以巧妙地解决相关的实际问题。
(师出示如下三张纸条,如图9)师:老师大概估计了一下,觉得这三张纸条的平均长度大约是10厘米。不计算,你能根据平均数的特点,大概地判断一下,老师的这一估计对吗?生:我觉得不对。因为第二张纸条比10厘米只长了2厘米,而另两张纸条比10厘米一共短了5厘米,不相等。所以,它们的平均长度不可能是10厘米。
师:照你看来,它们的平均长度会比10厘米长还是短?生:
师:它们的平均长度到底是多少,还是赶紧口算一下吧。
指名汇报。
师:你觉得,当把它变成多少的时候,它们的平均数是8?(5)你是怎么想的?
师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。
生:我发现,每一幅图中,前三次成绩不变,而最后一次成绩各不相同。师:最后的平均数——生:也不同。
师:看来,要使平均数发生变化,只需要改变其中的几个数?生:一个数。
师:瞧,前两个数始终不变,但最后一个数从5变到8再变到11,平均数——。
生:也跟着发生了变化。
师:难怪有人说,平均数这东西很敏感,任何一个数据的“风吹草动”,都会使平均数发生变化。现在看来,这话有道理吗?(生:有)其实呀,善于随着每一个数据的变化而变化,这也是平均数的一个重要特点。在未来的数学学习中,我们还将就此作更进一步的研究。
3、出示第3题。
师:下面这些问题,同样需要我们借助平均数的特点来解决。瞧,学校篮球队的几位同学正在进行篮球比赛。李强所在的篮球队,队员的平均身高是160厘米。
1.每个队员的身高一定是160厘米,对吗?
师:为了使同学们对这一问题有更深刻的了解,我还给大家带来了一幅图。(出示中国男子篮球队队员的合影)这是以姚明为首的中国男子篮球队队员。老师从网上查到这么一则数据,这支篮球队队员的平均身高为200厘米。这是不是说,篮球队每个队员的身高都是200厘米?师:你知道姚明的身高是多少吗?生:姚明的身高是226厘米。
师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数——。
生:那就一定有人身高不到平均数。
师:没错。据资料显示,这位队员的身高只有178厘米,远远低于平均身高。看来,平均数只反映一组数据的整体水平,并不代表其中的每一个数据。
师:可别小看这一数据哦。10年前,中国男性的平均寿命大约是69岁。比较一下,发现了什么?生:中国男性的平均寿命比原来长了。
(师呈现相关资料:中国女性的平均寿命大约是78岁)师:发现了什么?
生:女性的平均寿命要比男性长。
师:既然这样,那么,如果有一对60多岁的老夫妻,是不是意味着,老奶奶的寿命一定会比老爷爷长?生:不一定!生:虽然女性的平均寿命比男性长,但并不是说每个女性的寿命都会比男性长。万一这老爷爷特别长寿,那么,他完全有可能比老奶奶活得更长些。
师:说得真好!平均数的知识生活中随处可见。希望我们同学们做个有心人,用学到的知识解决一些问题。最后,让我们一起了解一些实际的平均数据。
四年级数学植树问题教学设计篇十六
1、通过练习,熟练掌握一位数除整十、整百数和几百几十数以及一位数除两位数的口算方法。
2、提高学生用多种策略解决同一个问题的能力。
3、培养学生总结概括的能力。
掌握算理。
提高口算正确率。
口算卡片。
1、口算。
450÷96000÷6100÷10。
39÷372÷480÷5。
120+48。
2、估算。
387÷5426÷8218÷4。
142÷5135÷7320÷6。
说一说426÷8、142÷5的估算过程。
1、教材第13页练习三的第7题。
指名学生读题。
分析数量关系。
集体列式计算。
说一说,为什么用除法计算。
说一说你是怎样想的。
请学生说出不同算法。
2、教材第13页练习三的第8题。
理解题意。
说一说,题中要我们求什么。
要求这两个问题,都需要哪些相关信息?
说一说,为什么用除法计算,怎样计算360÷4、360÷9。
(1)读题。
(2)独立分析题意,列式解答。
(3)订正口算过程及结果。
2、出示课件。
海龟的寿命大约是青蛙的多少倍?你还能提出哪些问题?
(1)阅读所给信息。
(2)讨论:根据所给信息,你还能提出哪些问题?
(3)教师板书学生所提问题。
(4)尝试解决这些问题。
找出下面每行数的排列规律,在()里填上合适的数。
481632()。
24381279()。
25112347()。
824123618()。

一键复制