作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么制定才合适呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
轴对称图形的认识的教案轴对称与轴对称图形的教案篇一
通过观察、实物操作,初步认识轴对称现象。能判断出哪些东西是对称的,并能找出它们的对称轴,学会画对称轴。
培养学生自主探究,观察,比较和概括的能力,以及小组合作意识,引导学生在合作中交流,学习,互动。
情感态度与价值观:
通过情境画面的引入,渗透爱国教育和审美教育,激发学生学习的兴趣;也让学生感受到对称的美,学会欣赏数学美。
教学重点:认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。 教学难点:能够找出轴对称图形的对称轴。
课件
(2)谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)
(3)教学“对称”
是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识——对称。这节课我们就一起来探索跟对称有关的知识。
(1)观察图形,发现特点。
观察课本29页这些图形有什么共同特点?
师:这些都是对称现象,说一说生活中还有哪些对称现象?
引导学生从形状、花纹、大小、图案上观察。
学生汇报交流自己的发现:图形两边都是一样的。
(2)教师小结。
这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的一条直线对折后,这些图形的左右两边能够完全重合。
(3)列举生活中的对称现象。
师:生活中的对称现象还有很多,你能举例说说。
学生自己说一说生活中的对称现象。
(4)动手操作,认识轴对称图形。
a、出示例1。
引导学生明确剪对称图形的方法。
要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。
折一折:把一张长方形的纸对折。
画一画:在对折的纸上画线。
剪一剪:沿着刚才画的线剪一剪,会剪出一件上衣的图案。
b、剪其他图形。松树、桃心、葫芦。
现在请同学们自己动手剪一剪,选择松树、桃心、葫芦三种图形中的一种,看谁既会动脑又会动手。
教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。
学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同角度进行判断。)
像上面这样剪出来的图形都是对称的,它们都是轴对称图形。图形中间的那条折痕所在的直线就是图形的对称轴。请看屏幕。我们在画对称轴时要画成一条虚线(课件演示)。
(6)小结
把一个图形对折后,如果两部分能够完全重合,我们就把这样的图形叫做轴对称图形,那条折痕所在的直线就叫做对称轴。
(1)下面这些图形中,哪些是轴对称图形?
(2)下面的哪些图形是轴对称图形?
(3)下面这些图形中,哪些是轴对称图形?试着画出它们的对称轴。
(1)下面的数字图案,哪些是轴对称的?
(2)字母也可以写成轴对称图形
(3)汉字也可以写成轴对称图形,举出
(4)猜一猜:下面的字只出现一半,你能猜出它是什么字吗?
(5)下面的图形分别是从哪张对折后的纸上剪下来的?连一连。
轴对称图形的认识的教案轴对称与轴对称图形的教案篇二
1、知识与技能:初步认识轴对称图形的基本特征。使学生理解对称轴的含义,能画出轴对称图形的对称轴。
2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
3、情感态度和价值观:在学生的学习活动中,让学生学会欣赏数学美。
通过学生观察、思考、动手操作突破重点。
通过自主探究学习突破难点。
1、教法:谈话法、直观教学法。
2、学法:自主探究法。
多媒体课件,剪好的一些轴对称图形,每名学生准备一些彩纸和一把剪刀。
播放课件,故事导入新课。
1、引导观察,感知对称。
师:为什么说在图形王国里,小蜻蜓、小蝴蝶、树叶都是一家子的呢?
生自由发言。
生1:我认为......
生2:我觉得......
生3:我想......
师:同学们有很多自己的想法。下面,我请同学们仔细观察这些图形的左边和右边,说说你发现了什么?把你的发现给小组的同学说一说。
学生互相讨论,交流想法。
学生自由发言。
生1:我发现......
生2:我发现.....
2、认识轴对称图形。
学生自由发言。
师:你们的想法正确吗?我们可以去验证一下。
(让学生用手中的图形对折试一试)
教师小结:如果把一个图形对折以后,两边的图形能够完全重合,我们就把这样的图形叫做轴对称图形。(板书课题)
3、剪轴对称图形。
师:现在,同学们都知道小蜻蜓、小蝴蝶、树叶为什么在图形王国里是一家的了吧。因为它们都是......(学生看板书回答:轴对称图形)
轴对称图形的认识的教案轴对称与轴对称图形的教案篇三
作为一名默默奉献的教育工作者,就不得不需要编写教案,借助教案可以让教学工作更科学化。教案要怎么写呢?下面是小编为大家收集的《轴对称图形的初步认识》教学教案,仅供参考,大家一起来看看吧。
1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。
2、通过观察、操作活动发展学生的空间观念,培养学生的观察能力和动手操作能力。
3、充分感受数学中的对称美,体会数学与生活的紧密联系。
教具:多媒体课件、一些简单的几何图形、蝴蝶图形。
学具:一些简单的几何图形(一些对称、一些不对称)
1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。
2、认识对称物体。
(1)师质疑:为什么女生猜得又快又准呢?
(2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)
(一)初步感知对称图形
1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。
2、师小结:像这样的图形,叫做对称图形。(板书:图形)
(二)猜想验证对称图形
2、寻找验证方法:师引导学生寻找验证对称图形的方法。(板书:对折)
3、小组合作验证:用对折的方法,验证以上平面图形。要求学生对折后认真观察:将对称图形对折后有什么发现?理解“重合、部分重合、完全重合”。
师小结:这些对称的图形通过对折能够完全重合。
师:打开折过的对称图形,你有什么新的发现?
师小结:对称图形,对折后能完全重合的这条折痕,我们就把它叫“对称轴”。这些图形就叫“轴对称图形”。
1、基础练习:判断。(是否是轴对称图形)
2、应用练习:猜一猜。(课件出示p120的第2题)
3、生活中数学:例举生活中的轴对称物体。
1、欣赏生活中的轴对称物体,感受对称美。
2、生动手做轴对称图形,创造美。
板书设计:
认识轴对称图形
完全重合
对折
轴对称图形的认识的教案轴对称与轴对称图形的教案篇四
《数学课程标准》指出:有效的学习活动不能单纯地依赖模仿与记忆。动手实践、自主探究与合作交流是学生学习数学的重要方式。自主学习是时代赋予数学教学活动的要求。所以教师必须为学生创造自主学习、自主活动、自主发展的条件,让学生积极主动地参与数学教学的全过程,使每个学生都在原有的基础上得到发展,获得成功的体验。树立学好数学的自信心。《轴对称图形的初步认识》本节课重点让学生认识轴对称图形,了解轴对称图形的含义,能够找出轴对称图形的对称轴。难点是能根据轴对称图形的概念进行判断轴对称图形,并画出对称轴。本节课通过折一折、辨一辨、试一试、议一议、比一比等操作,实现对轴对称图形的理解,突破难点、突出重点,激发爱学、善学、乐学的习惯。
一、激发自主学习的动机 动机是激励学生学习的内部动力。自主学习需要一种内在激励的力量。在导入新知识时,直观、巧妙、激趣、贴近生活。如,上课伊始、教师拿一个用纸剪的圆,让学生动手折一折找圆的方法渗透图形的对称美,引发学生浓厚的学习兴趣,使其产生强烈的探究原望,变被动学习为主动求知。
本节课的难点。这种尊重学生的学习方式,使学生自主地获得了数学知识。
三、重视自主学习的过程 教师要尝试让学生自主学习的过程,优化课堂教学中的反馈与评价。通过评价,可以激发学生的求知欲,坚定学生学习的自信心,交流师生的感情。
总之,先进的教学理念,精心的教学设计,充分的课前准备、优质的课堂教学,使这节课顺利完成,学生的能力在本节课有了提高和发展,教学效果很好。
轴对称图形的认识的教案轴对称与轴对称图形的教案篇五
教材p28~29页例1及相应的做一做和练习七的第1~3小题。
1、知识与技能:联系生活中的具体物体,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的一些基本特征,并初步知道对称轴。
2、过程与方法:能根据轴对称图形的特征,在一组图形中,识别出轴对称图形。
3、情感态度与价值观:在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,体会学习数学的乐趣。
认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。
观察、讨论法。
多媒体课件、白纸、剪刀等。
2、(学生自由回答)
3、(出示第28页的主题图)是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识对称。【板书:对称】这节课我们就一起来探索跟对称有关的知识。
(一)认真观察,体验对称。
1、观察图形,发现特点。
(2)引导学生从形状、花纹、大小、图案上观察。
(3)学生汇报交流自己的发现。
树叶图:以树叶中间叶脉所在的直线为界,左右两边的形状和大小都是相同的。
蝴蝶图:以蝴蝶中间所在的直线为界,左右两边的形状和大小都是相同的。
天安门城楼图:以天安门城楼中间所在的直线为界,左右两边的形状和大小都是相同的。
(4)教师小结。
这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的一条直线对折后,这些图形的左右两边能够完全重合。

一键复制