总结是对过去经历的一种回顾,能够帮助我们更好地成长和发展。适当添加个人观点和思考,可以增加总结的独特性和深度。如果你想了解一些运动比赛的技巧和策略,以下的资料可能会给你一些帮助。
小学六年级数学下册知识点篇一
1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。
分数乘法的算法:
1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘,用分子相乘的.积做分子,分母相乘的积做分母。
分数的化简:分子、分母同时除以它们的最大公因数。
关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。
分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。
特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
小学六年级数学下册知识点篇二
现实生活中,有一些意义相反的词,反映着一些不同的情境、状态或过程,如“高出与低于”“扩大与缩小”等,这些词与数字、单位结合在一起就构成了相反意义的量,如“涨0.1元”“调出80t”等,这个概念包含:
(1)意义相反,如向东与向西,收入与支出等.
(2)都是同类的数量,如“高出10米与支出300元”就不是相反意义的量.
(1)正数:如+1,+3/2号,+1.05等这些小学里学过的数(除0外)前加上“+”
号就是正数,此时的“+”不是表示加法运算,而是代表数的性质,如“+1”读作“正1”,正数前面的“+”可省略不写.
车上淋7。
表示数的性质,读作“负”,负数前面的“-”号不能省略.
(3)关于“0”的意义.
0既不是正数,也不是负数,是正数与负数的“分界线”,同时,它不再是小学理解的表示“没有”的数,也不再是最小的数,结合生活实际,它具有自身的意义,如“00c”表示冰点时的温度等.
3.用正负数表示具有相反意义的量。
正数是比0大的数,负数是比0小的数,正、负数可用来表示生活中这些具有相反意义的量.自然界中有许多具有相反意义的量,如上升5米与下降6米,向东l0km与向西8km,盈余10万元与亏损2万元等,都可以用正数与负数来表示它们.
解题方法指导。
[例1]用正、负数表示下列具有相反意义的量.
(1)在知识竞赛中,如果用+10表示加10分,那么扣20分应怎样表示?
(3)超出标准质量的相反意义的量是低于标准质量,超出标准质量0.02g表示为+0.02g,则-0.03g表示低于标准质量0.03g.
解:(1)扣20分记作-20;。
(2)沿顺时针方向转12圈记作-12圈;。
(3)-0.03g表示乒乓球低于标准质量0.03g.
说明:具有相反意义的两个量规定其中一个量用正数表示,另一个量就用负数表示,到底用正数还是用负数来表示其中的哪一个量,只是一种规定,但也常遵循人们的习惯,比如人们习惯用正数表示零上温度,用正数表示收入等.
分析:在现实生活中,人们总是习惯把“高于”“上升”等记为正数,一般情况下,数学遵循这些生活“约定俗成”的规矩,所以,本题中的“+”号表示高于正常水位.
解:30.1米,28米,26.8米,25米,26米,29米。
说明:从本题的解答过程可以看出,数学与现实生活是密不可分的,脱离了生活去看数学,不仅会感到单调与枯燥,而且也会让数学成了“无源之水”.
分析:用正、负数表示相反意义的量,把比标准高度高记为正,则比标准高度低记为负;规定课桌的高度比标准高度最高不能超过2mm,最低不能少于2mm就算合格,也就是量得尺寸高、低在+2mm和-2mm之间算合格,故知+1mm、-lmm.0mm、-1.5mm均为合格.
解:比标准高度低3mm记作-3mm,以上5张课桌中有4张合格.
分析:因为规定向东为正,所以走-15m、-12m,即为向西走15m和12m,那么这个人最后应在18-15+20-12=11(m)处,即在a的东边11m处.
“向西走”.
(2)本题可结合经验,用示意图帮助求解,就像直接观察温度计来获取温度变化情况一样.
小学六年级数学下册知识点篇三
1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母o表示。它到圆上任意一点的距离都相等.
3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=。
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)。
9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形。
只有3条对称轴的图形是:等边三角形。
只有4条对称轴的图形是:正方形;。
有无数条对称轴的图形是:圆、圆环。
小学六年级数学下册知识点篇四
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心、并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(8)什么是弧?
在圆上两点之间的部分叫弧。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
小学六年级数学下册知识点篇五
位置与方向:
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
(1)先找观测点;
(2)再定方向(看方向夹角的度数);
(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东——西;南——北;南偏东——北偏西。
小学六年级数学下册知识点篇六
2、从个位加起;。
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条。
2、从个位减起;。
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则。
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;。
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;。
3、算式里有括号的要先算括号里面的。
(四)四位数的读法。
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;。
2、中间有一个0或两个0只读一个“零”;。
3、末位不管有几个0都不读。
(五)四位数写法。
1、从高位起,按照顺序写;。
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)4位数减法也要注意三条。
2、从个位减起;。
3、哪一位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则。
1、从个位起,用一位数依次乘多位数中的每一位数;。
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则。
2、除数除到哪一位,就把商写在那一位上面;。
3、每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则。
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;。
2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;。
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则。
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,
2、除到被除数的哪一位就在哪一位上面写商;。
3、每求出一位商,余下的数必须比除数小。
1、先读万级,再读个级;。
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;。
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则。
1、从高位起,一级一级往下读;。
2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;。
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。
小学六年级数学下册知识点篇七
一、认真填写。(每题1分,共23分)。
1、2155cm2=()dm2=()m23小时25分=()小时。
4.05m3=()dm35600m2=()km2。
586ml=()l2722cm3=()m3=()l。
2、0、375=()%==()16=():()。
3、一个圆柱体,如果把它的高截短4厘米,表面积就减少125.6cm2。它的底面半径是()厘米,体积减少了()立方厘米。
4、如果80m表示向东走了80m,那么-60m表示()。
5、一个半径是5cm的圆按4:1放大,图形的面积是()平方厘米。
6、在ab=c中,当b一定时,a和c成()关系,当c一定时,a和b成()关系。
7、一个棱长4厘米的正方体木块削成一个最大的圆柱,圆柱的体积是()立方厘米。
8、有一个机器零件长5毫米,画在设计图纸上长2厘米,这副图的比例尺是()。
9、两个等底等高的圆柱和圆锥,它们的体积之和是24立方厘米,其中圆锥的体积是()立方厘米。
10、在比例尺是1∶160000的地图上,量得a、b两地间的距离是8厘米,a、b两点间的实际距离是()千米。
11、七百二十亿零五百六十三万五千写作(),精确到亿位,约是()亿。
12、北京天安门城楼有118米长,可在华英拍的照片上只有4cm长,这张照片的比例尺是()。
13、3x=4y,那么x:y=():(),x和y成()比例关系。
14、立体图形都是由()围成的,圆柱体是由()个面围成的。
15、甲、乙两数互为倒数,甲数和乙数成()比例。
16、比的后项一定,比的前项和比值成()比例。
17、圆柱的侧面展开是一个正方形,圆柱的底面半径与高的比是。
():()。
18一个圆柱,沿底面的一条直径切开后,得到一个边长6厘米的正方形截面,这个圆柱的体积是()。
19、把一个圆柱的底面半径扩大2倍,高扩大3倍,这个圆柱的底面周长扩大()倍,侧面积扩大()倍,体积扩大()倍。
20、把两张同样的长方形纸卷成形状不同的圆柱形筒,并另装上两个底。
面,那么这两个圆柱的()一定相等。
21、在430097842这个数中,3在()位上,万位上的数是()。省略万后面的尾数、四舍五入求近似数是()。
22、10以内的质数有(),合数有。
23、两个正方形的边长比是4:5,它们的周长比是(),面积之比是()。
二、判断下列式子中的数量成何种比例。(每题2分,共16分)。
1、工作总量一定,工作效率与工作时间成()比例;
2、工作效率一定,工作总量与工作时间成()比例。
3、两种相关联的量,不成正比例,就成反比例。()()。
4、如果a=5b,那么a:b=1:5。()。
5、(、均不为0),则和成反比例。()。
6、六年级今天出勤率为98%,来的人数和没来的人数成反比例。()。
7、圆的面积和它的半径的平方成正比例。()。
8、圆柱的体积一定,底面半径和高成反比例。()。
三、按要求计算。(每题2分,共16分)。
(一)化简。
40:1501:5:125%:3.2:
(二)用简便方法计算。
四、小小法官(每题2分,共10分)。
1、一个圆柱的底面半径扩大2倍,高缩小2倍,它的侧面积不变。()。
2、等底的圆柱和圆锥,圆柱的体积是圆锥的3倍。()。
3、工作总量一定,制造每个零件的.时间和一共用的时间成反比例。()。
4、一个圆柱体有无数条高,一个圆锥体只有一条高。()。
5、将一个圆柱的侧面展开后是一个长方形或平行四边形。()。
五、操作题。(每题5分,共10分)。
1、在下图中表示出各建筑物的位置:少年宫在吴刚家北偏西40方向500m处,华联超市在小明家南偏东20方向400m处。
图书馆。
2、在图上分别量出图书馆的长和宽,并计算出它的实际占地面积。
六、解决问题(每题5分,共25分)。
3、一个粮仓(如下图),这个粮仓一共可以放粮食多少立方米?
4、一辆货车厢是一个长方体,它的长时4米,宽是2.5米,高是4米,装满了一车粮食,现在要把这些粮食卸到一个底面半径是2米的圆柱形粮仓里,能装多高?(得数保留一位小数)。
小学六年级数学下册知识点篇八
3.小红买6角和8角的邮票一共13张,用去8元4角钱。这两种邮票各买了多少张?(用“假设”的策略进行思考)。
11、一个长10厘米,宽6厘米,高5厘米的长方体木块,可以切割成()块棱长是2厘米的正方体木块。
12.从甲地到乙,客车要10小时,货车要15小时,现在两车同时从两城相对开出,相遇时客车正好行了240千米,问甲乙两城相距多少千米?(用方程求解)。
小学六年级数学下册知识点篇九
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
小学六年级数学下册知识点篇十
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联 系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识 圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算 公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之 间的联系,发展学生的空间观念。
1、理解比例的意义和基本性质,会解比例。
2、苏教版小学六年级数学下册知识点归纳:理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例, 能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方 格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或 缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解 释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简 单的实际问题。
2、通过抽屉原理的灵活应用感受数学的魅力。
1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的 基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解 学过的方程;养成检查和验算的习惯。
2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。
3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积 和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的`平移、旋转的认识;能用数对或根据方 向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。
4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做 出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的 实际问题。
5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。
小学六年级数学下册知识点篇十一
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
2、一个数与分数相乘,可以看作是求这个数的几分之几是多少。
1、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
2、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的`数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
5、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
6、分数混合运算的运算顺序和整数的运算顺序相同。
7、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a b = b a
乘法结合律: ( a b )c = a ( b c )
乘法分配律: ( a + b )c = a c + b c
希望为大家提供的六年级数学上学期概念知识点,能够对大家有用,更多相关内容,请及时关注我们!
小学六年级数学下册知识点篇十二
一、课内重视听讲,课后及时复习。
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的。解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。
有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的解题习惯是非常重要的!
三、调整心态,正确对待考试。
1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
小学六年级数学下册知识点篇十三
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的.简便运算。
2、一个数与分数相乘,可以看作是求这个数的几分之几是多少。
1、分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
2、分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。
5、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
6、分数混合运算的运算顺序和整数的运算顺序相同。
7、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc

一键复制