食物安全问题成为人们关注的焦点,人们对食物的质量要求越来越高。总结需要有系统的思维,可以从整体到细节进行梳理。总结范文中的案例和实例可以帮助我们更好地理解和应用总结的方法和技巧。
一位数除两位数教学反思篇一
今天开学第一天,而第一天就被随堂听课,运气真是很好,幸好昨天做了认真的准备,所以不算很慌张,但是课上出现了很多我没有预设到的问题,上着上着我却是越来越慌张,最后除数被除数都不分了。
三位数除以一位数的除法由于有两位数除以一位数的基础,所以我觉得应该不会很难,所以在例题986除以2的竖式计算那里,黑板上提示到百位上商4,就放手让学生自己探索下面的算法了,但是三位数的被除数让学生无从下手,本该是一位一位往下挪的数字,有的孩子一起挪到下面来,或者是百位上有余数却没有移下来,有的数位也没有对齐就乱移一通,我自己在解释的时候也乱,后来想清楚了,觉得自己挺悲剧的。
首先,大部分学生都知道除法应从最高位除起,这个地方点到为止。
然后弄清百位上的被除数是几,百位上有没有余数,余到十位上加上十位上的数字共同成为十位上的被除数,接着除,再看十位上有没有余数,余到个位上加上个位上的数字共同成为另一个被除数,接着除,个位上还有与余数的就余下来作为商的余数,这样讲条理会清楚一些,学生接受起来,模仿起来也容易上手。
其次,对除法法则的渗透还要加强。我自己是在不知不觉中运用了除法法则,但是没有明确的说出来,造成了人为的障碍。最典型的错误就是余数会比除数大,光看算式很容易发现余数不应该比除数大,但是在计算的过程中就经常出现,问题大多出在试商的环节,口诀不熟,慢,一慢一不熟就容易让思维停滞,一旦停滞就不能考虑周到,往往乘法好不容易嘀咕出来是多少了,写出来一减余数还老大的,所以下面要练习学生的试商,简单点就直接练习乘法的口诀。
这节课我是想有一个尝试的,就是以最简答的小组合作的形式——同桌合作,来完成练习部分的锻炼。因为两个人能形成最简单的合作,并且两个人的合作有多人合作没有的优势,就是在两人合作中每个人都必须参与其中,每个人都是发言者和倾听者,每个人必须更专心的记录或发言,而合作意味着对话的开始,对话是思维的外衣,是两个人平等的展现自己的思想,哪怕是最浅显的,也给进一步的思考提供了自信的源泉。前面两人合作口算问题不大,后面的笔算出现了各种各样的问题,打乱了我的教学预设,很多该小组完成的作业被延误了。
所以,计算教学需要思考的还很多,现在我越来越觉得教的过程可以不完美可以琐碎,但要条理清楚,要让人容易上手,上完学生都会做作业那就是最实在的奖励。
一位数除两位数教学反思篇二
退位减法既是本单元的重点,也是本单元的难点,通过几节课的教学我有以下反思:
(2)及时引导,为计算做好铺垫。同样,在这节课中计数器的操作无疑也是一个难点,特别是拨一个十要能够想到同等的表示就是要在个位上拨10个算珠;学生很难想到。我想原因是因为以前我们一直强调的是满十进一,而且是一种顺向的思维,今天则要做的是逆向的思维,难度上比较大。所以我们在学生操作的时候要引导学生思考,“个位上什么也没有,怎么办?能不能借一些过来?借一个十,实际上就是多少个一,可以怎样去表示?”。最后,还要让学生上台来演示说说操作的方法;并且这种方法可以作为一个重点,因为他是直接为后面的竖式计算作铺垫的。
(3)重视练说结合,巩固方法。在后面的试一试和练习题中要多问学生你是怎么想的,把你的思考过程说出来。我们可以给学生一个模式:个位上几减几不够减,向十位借一个十,用十几减几,十位上是几(减一个后的数)减几,差就是几十几。这样一边练一边说对学生技能的掌握应该有一个比较好的效学生出现的问题:
(1)个别学生相同数位对不齐。这几个学生要进行单独辅导,让他们认清数位,知道数位上的数表示的意义。
(2)个位不够减,知道从“十位退一”,在个位上加十再减,但是计算十位和十位相减时,学生不把借的“一个十”给还上再减,致使整个计算结果多了十。
(3)个别学生在列竖式时,落写减号,等号后的得数忘总之,作为一名教师要有耐心,要把机会让给每一个学生,让每一个孩子在启发中互相创新,在启发中激起探究的热情。在这过程中促进学生思维的发展,共同促进学习氛围的形成,对学生今后的发展,都会有意想不到的收获。
一位数除两位数教学反思篇三
优点:
在探索一位数除三位数(首位能整除)的口算方法时由于部分学生应能应用已有知识计算出结果,为让每一位学生都能进一步理解算理,我主要通过让学生摆小棒来理解。使学生通过动手操作,在操作过程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解“形”和“数”之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
在教学一位数除三位数(首位能整除)的笔算方法时,我主要是让学生自己观察竖式并结合操作思考以下问题:(1)从哪一位开始算起(2)2为什么写在商的十位?(3)竖式中的第二个4、6分别表示什么等问题,通过观察、思考,运用已有知识(有余数除法的笔算方法)的迁移摆小棒的过程,很容易理解第二个4、6分别是怎么得来的,表示什么。
缺点:一、学生对于竖式的计算没有达到预期的效果。
我认为学生以前接触过除法竖式,掌握起来应该不难,但是学生实际做起来并不理想。做起来丢三拉四,不是很好。
本次教学是以有余数除法笔算方法为基础的,但两个知识点之间又存在着很大的不同:以前学的有余数的除法是直接应用表内除法计算的,商都是一位数,而现在所学的两位数除以一位数(首位能整除)的除法则商是两位数,不能直接应用表内除法进行计算,而要从十位开始算起。由于没有让学生进行新旧知识的对比,导致很多学生在笔算两位数除以一位数(首位能整除)的除法时,和以前的知识产生混淆。
总之,由于学生已有认知基础和思维方式的不同。教学中要充分利用时间和空间,注重学生的动手操作,了解学生不同的操作方法,并在课堂上有效地引导,逐步让学生在比较明晰较合理的操作方法上理解算理,从而提高计算技能。
一位数除两位数教学反思篇四
除数是一位数的除法是本册教材重点也是难点教学内容之一,这部分内容是学生学习除数是两位数、除数是多位数除法的重要基础。本节课是笔算这一内容的起始课,是在学生已经掌握了用乘法口诀求商的方法、学会了除法算式的写法及学习了口算除法的基础上进行教学的。本节课的教学重点是探索一位数除两位数的笔算方法,掌握竖式的书写方法和格式;难点是理解一位数除两位数的笔算除法的算理。
我从学生的生活经验和已有知识出发,精心创设情境,引导学生开展尝试、操作、交流、实践.基于学生是数学学习的主人这一教学观念,我从学生的认知发展水平和已有的知识经验出发,组织探究笔算方法的活动。
先以解决三年级平均每班种多少棵?为例,请学生运用已有的知识、技能,探索422怎样算。在学生独立探索后,交流自己的方法。有的学生通过分小棒,知道结果;有的学生口算出422=21;还有的学生在运用口算方法的同时,写出竖式表示计算结果。交流活动展示了学生探索的成果,也显示出学生对笔算方法的不了解。因此,我提出:今天我们重点研究笔算除法明确学习内容。通过课件再现分小棒的过程,并以师生对话教师板书的方式,共同经历笔算的.过程,帮助学生了解笔算除法的顺序、求商的方法和商的书写位置。
接着,请学生解决四年级平均每班种多少棵?的问题,进一步探索笔算除法。在这里,先让学生用竖式计算522,并告诉学生:可以先用小棒分一分,再写竖式。我们看到,有的学生动手分小棒,有的学生直接写竖式,每个学生都在认真探索。1分钟过去了,我请写完的同学和同桌说一说,是怎样算的;2分钟过去了,请学生向全班展示,师生分享着成功的喜悦。展示后,课件动态显示分小棒和笔算522的过程,并在黑板上再现除法竖式,理顺思路,提升了学生对除法笔算过程和算理的理解。然后,老师特意请学生回忆比较422与522的笔算过程有什么不同?通过比较,突出522的第二个计算过程,即被除数十位上余下的数与个位上整节课,从植树节、植树活动开始,到布置学校的设计活动,围绕着学生的学习展开了一系列活动。学生经历了探索,运用除法笔算方法的全过程,主动构建知识。学生学的快乐、主动,达到了预期的教学目的。的数合并,再继续除,使学生进一步认识除法的笔算方法。
一位数除两位数教学反思篇五
在本节课的一开始,我就安排了这样几道口算:20×4、40×20、23×100、43×200,先让学生观察算式的特点,让学生说说你在口算每道题是可以把原式看作什么计算会简便一些,然后让学生观察成乘数中的零的个数和积末尾零的个数的关系,并本以为作这样的铺垫,学生在解决例题中的竖式计算时可能顺利一些,但是似乎能明白这样简便写法的道理,但是真正在课堂作业中就出现了许多问题:如竖式不会写,不知该如何对齐数位,积末尾的零漏写等,看来对学生的思维还需进一步的指导。
尽早渗透可以为后面学习用计算器探索规律作铺垫。
一位数除两位数教学反思篇六
学生在掌握了整百、整十的数乘一位数口算的基础上,探讨每一数位上的积都不满十的任意两、三位数乘一位数的计算方法,并引出乘法竖式的书写格式。通过计算使学生懂得任意两、三位数乘一位数,都是把这个数每一数位上的数分别乘这个一位数,再把所得积相加。
2、先请同学们估算一下,3盒大约有多少枝彩笔?
3、t:如果我们要知道准确的枝数,该怎么办呢?
小精灵问了:怎样算一共有多少枝彩笔?
2、t:这道题该怎样计算呢?
让小组内每一个同学先思考3分钟,在纸上算算看,能不能算出来,也可以摆出小棒(或其他学具)或画画图等,如果能想出几种算法的,就把几种算法都写出来。
算完后,在小组里交流,把自己的算法说给同组的其他同学听。
全班汇报,由各小组的代表向全班同学汇报自己小组的各种算法。
1、t:现在同学们想出了这么多种的算法,我们能否把算法分类?
估计学生的算法可能有如下几类:
摆学具求得数。
画图求出得数。
连加法:12+12+12=36。
数的分解组成:10×3=302×3=630+6=36。
拆数法(转化成表内乘法)。
8×3=247×3=216×3=18。
4×3=12或5×3=15或18+18=36。
24+12=3621+15=36。
【让学生自己发现规律、总结规律,有助于学生提高分析概括的能力。】。
2、评价各种算法,组织学生议论,每一种算法是怎样算的,各有什么适用范围。
(1)摆学具和画图也是一种很好的方法,但我们学了数学以后就应尽量使用计算的方法来算。
(2)根据乘法的含义用连加的方法也是可以的,但是如果因数的个数比较多,算起来就比较麻烦。
(3)把一个因数分解成几个十和几个一,分别与另一个因数相乘,再把几个乘积加起来,这种方法不管因数是几都能算。
2、板书展示竖式书写过程,突出书写的步骤和书写的位置,边板书边说明。
3、先出示有部分积相加的竖式,
再出示简便竖式,并说明为什么可以写成简便竖式?
4、学生在练习本上完成“做一做”的三题,教师巡视了解情况,如有发现错误,知道订正。
学生完成练习十六的作业,每道题先让学生估算,然后再用竖式计算。
第一题:让学生独立完成后,说说为什么用乘法计算?
第二题:让学生独立完成后,同桌互相检查并说说自己是怎样算的?
第三题:让学生独立完成后,再交流这掏题有哪几种算法?1、练习一第2题。
教学中,我放手让学生独立经历探索多种算法和他人交流的过程,享受成功的快乐。在探索算法时,教师要鼓励学生摆脱常规思维方法的限制,具体的分析问题。
文档为doc格式。
一位数除两位数教学反思篇七
优点:
在探索一位数除三位数(首位能整除)的口算方法时由于部分学生应能应用已有知识计算出结果,为让每一位学生都能进一步理解算理,我主要通过让学生摆小棒来理解。使学生通过动手操作,在操作过程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解“形”和“数”之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
在教学一位数除三位数(首位能整除)的笔算方法时,我主要是让学生自己观察竖式并结合操作思考以下问题:(1)从哪一位开始算起(2)2为什么写在商的十位?(3)竖式中的第二个4、6分别表示什么等问题,通过观察、思考,运用已有知识(有余数除法的笔算方法)的迁移摆小棒的过程,很容易理解第二个4、6分别是怎么得来的,表示什么。
缺点:一、学生对于竖式的计算没有达到预期的效果。
我认为学生以前接触过除法竖式,掌握起来应该不难,但是学生实际做起来并不理想。做起来丢三拉四,不是很好。
本次教学是以有余数除法笔算方法为基础的,但两个知识点之间又存在着很大的不同:以前学的有余数的除法是直接应用表内除法计算的,商都是一位数,而现在所学的两位数除以一位数(首位能整除)的除法则商是两位数,不能直接应用表内除法进行计算,而要从十位开始算起。由于没有让学生进行新旧知识的对比,导致很多学生在笔算两位数除以一位数(首位能整除)的除法时,和以前的知识产生混淆。
总之,由于学生已有认知基础和思维方式的不同。教学中要充分利用时间和空间,注重学生的动手操作,了解学生不同的操作方法,并在课堂上有效地引导,逐步让学生在比较明晰较合理的操作方法上理解算理,从而提高计算技能。
文档为doc格式。
一位数除两位数教学反思篇八
新教材中,教材例题的编写非常精简,有些知识点的跨越很大,教学“一位数除三位数”时,教材只呈现一个例题(一位数除三位数商是两位数),“一位数除三位数商是三位数”只在做一做中出现。而这部分知识难点较多:除法竖式的书写格式,试商,正确判断并计算“商是两位数或三位数”这两种类型的题目。这些都是学生难以理解和掌握的。因此,在例题教学前,我加入了商是三位数的题目,除了可以加深对笔算除法算理的理解外,还可以与商是两位数的除法形成有力的对比。
虽然,通过复习铺垫、自主探究、交流反馈、对比发现,学生对一位数除三位数笔算除法的算理已经清晰明了,但仅此,学生要想正确计算,还需要在大量的练习中熟练把握,而那些学习处于中、下等水平的学生,学起来仍很吃力。尤其是商是三位数的情况,学生往往会同时移动两位来计算,造成了计算上的.错误。但全班整体掌握较好。
从这节课的教学中,我深刻感受到:在教学时,一定要先熟悉教材,吃透教材,挖掘所有知识点,把握编者意图,并根据班级实际选择合适的教学方法,才能造就一节高效的课堂。
一位数除两位数教学反思篇九
1、让学生在动手操作中感知算理。
在探索两位数除以一位数的口算方法时由于部分学生已经能应用已有知识计算出结果,为让每一位学生都能进一步理解算理,我主要通过让学生摆小棒来理解,使学生通过动手操作,在操作过程中探讨出新知。因为动手操作是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。所以,通过组织学生动手操作学习新知识,正是适应这一认知特点,学生只有在一些实际操作中才能逐步体会、理解形和数之间的联系,从而使学生在动手操作的愉快氛围中获取知识。
2、让学生在操作观察中理解算理。
在教学两位数除以一位数(首位不能整除)的笔算方法时,我主要是让学生自己观察竖式并结合操作思考以下问题:
(1)从哪一位开始算起。
(2)2为什么写在商的十位?
(3)竖式中的4、12分别表示什么等问题。
缺乏新旧知识点的对比。
本单元有两次比较。
其一:以有余数除法笔算方法为基础,但两个知识点之间又存在着很大的不同:以前学的.有余数的除法是直接应用表内除法计算的,商都是一位数,而现在所学的两位数除以一位数(首位能整除)的除法则商是两位数,不能直接应用表内除法进行计算,而要从十位开始算起。
其二:两位数除以一位数,首位能整除与不能整除在算理、算法上也不尽相同,找出他们的共同点总结两位数除以一位数的方法,找出他们的不同点,讲清竖式的写法,这样才能突出重点突破难点。由于没有让学生进行及时知识的对比,导致很多学生在笔算两位数除以一位数的除法时,和以前的知识产生混淆,没有突破竖式计算这个难点。在以后教学中要发挥板演的作用,加强竖式写法的指导。
一位数除两位数教学反思篇十
本节课的内容主要包括整十数乘一位数的口算,以及不进位的两位数乘一位数的笔算,主要是让学生经历探索整十数乘一位数的口算方法和不进位的两位数乘一位数笔算方法的过程,理解并掌握相关的计算方法,能正确地进行相关的口算和笔算。
在教学时,出示教材情境图,先找信息、提出问题,然后解决问题。在解决问题的过程中,我充分放手,让学生自己探索两位数乘一位数的口算方法,学生通过独立思考,小组交流讨论,经历了探索多种算法和与他人交流的过程。在教学中,我让学生用自己的语言进行表述,而不是强求统一的语言进行操练,只要能够算出结果都给予肯定。
在多种算法中,我让学生选择一种你认为算的快的方法,注重方法的优化。如:由2×3=6,得20×3=60。将方法进行优化。通过比较、抢答、等形式进行练习巩固。
在出示14×2的竖式计算时应该重点强调竖式计算:“先用2乘个位上的4得8写在个位上,再用2乘十位上的1得2个十写在十位上。”通过说算理板书书上的分布计算的过程,再引导学生简化计算的中间环节,得出两位数乘一位数竖式的一般写法。重点让学生说说,竖式一般写法。
这是学生第一次接触两位数乘一位数的笔算,但学生们掌握的非常好,整节课效果良好。
一位数除两位数教学反思篇十一
上学期教学两位数除以一位数时,结合着可操作的实物情境(羽毛球),算理讲得很充分很透彻,学生也的确做到了“知其然也知其所以然”,唯一可惜的是并未脱离情境从计数单位的角度来引导学生理解算理。
本学期第一课三位数除以一位数(商是三位数)的教学却让我犯了难:竖式计算的算理教还是不教?怎么教?从教材和教学用书看,似乎以迁移两位数除以一位数的算法为主,并不需要算理的支撑(仅解决商的最高位问题),但如此一来,又如何跟学生解释“除完百位只把十位移下来除而不要连个位一起移”之类的问题?学生在尝试计算和巩固练习中可都出现了这样的问题。
看来还是要讲一讲道理的,可道理又该如何讲?再借助实物情境是不可能了,没有这样的情景可用。那就只能从计数单位的角度来讲了,可这样高度抽象的算理在具体教学时是一带而过,还是花大力气细讲?又有多少学生能接受,又有多少学生能记住?这里是个大大的问号。
思之再三,课上还是没敢“讲道理”。通过估算,学生确定了商的最高位。然后就放手让他们自己利用旧有经验试着写完竖式,巡视中我果然发现了不少学生出现了十位个位一起移下来除的情况。交流时先让正确的学生详细介绍了计算过程,随后我举出了发现的这一问题,问:一起移下来后方便继续除下去吗?在正、反例的对比下,学生知道了:要一位一位往下除。但他们的所谓知道也仅是知道表面上的原因而已,个中的真正原因是不清楚的。接着就与复习中的两位数除以一位数竖式进行求同比较,粗略的概括了这么几条:从最高位除起;一位一位除;有余数要和后一位合起来再除;除到个位才能结束。
一位数除两位数教学反思篇十二
两位数乘一位数的口算,进位的与不进位的口算方法相同。学生在掌握了两位数乘一位数不进位的口算方法后,应用这一已有知识探索出进位的口算方法对学生而言已不再是难事。我认为在新课的展开时,应注重的是学生的思维过程,因此,我鼓励学生自己去探索口算的'方法。在学生探究过程中,一些学生已经能用在脑子中列竖式的方法来口算,一些学生能用前一节所学的方法即两位数乘一位数口算时,可把两位数分成几个十和几个一,然后分别乘一位数,再把乘得的积加起来。应该说,除个别学生外,其他学生都掌握了方法并能正确地进行口算。但是在课堂上,我没有反思这些学生为什么会错,一些学生当然是因为粗心做错,而有些学生对于算理还是有些模糊。在全班反馈中我没有抓住学生的错误进一步反问其为什么会出现这样的错误,而只是一味地让别的同学来帮助他正确解决。然后在课后单独辅导过程中也没有进一步询问其错误的原因。
我看到过这样一段文字:记得有个社会心理学家曾指出:“我们甚至‘期望’学生犯错误”,“因为从错误中吸取教训,便可争取明天的成功”。学生探索新知的过程往往不是笔直的,会产生这样或那样的错误。如果把学生的错误“隐藏”起来使教学显得一帆风顺、严丝合缝,这样的课未必是好课。“剥夺学生犯错的权力就等于限制他们自由选择的意愿”。所以,数学教学在让学生体验成功的同时,还要给学生尝试错误的权利,让学生在尝试错误的过程中锤炼自我,培养他们敢于克服困难的坚毅性格,进而形成良好的学习品格。
所以,我想,在让学生掌握正确的方法的同时,要让他们充分认识到原有的错误为什么是错的,要让学生学会观察,学会分析,让学生自己去评价、分析错误使全班学生都能关注这种错误,从而真正理解算理。

一键复制