在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
长方体的认识教法长方体的认识详案篇一
1.通过与长方形的比较,了解形与体的异同
2.探索与发现长方体有六个面,8个角,12条边,知道正方体是最特殊的长方体。
3.学习有效点数的多种方法。
1.记录单,不同长方体盒子三个,各种长方体小盒子每个幼儿人手一个
(一)导入
1.已有经验导入,复习长方形的特征
师:(出示长方形)这是什么形状?它有什么特征?
2.根据幼儿的回答记录
师:有几条边?几个角?几个面?
(二)初步感知长方体
3.出示长方体,引导幼儿进行观察比较长方形和长方体的异同
师:带来一个新朋友,它和长方形有什么不一样?(厚薄)他们有什么地方是一样的?(有面,有边,有角)
4.提出启发性问题,幼儿自由猜测
师:它有几个面呢?
5.幼儿使用长方体盒子自由探索
师:请你们拿出自己的小盒子,它是什么形状的?(长方体)它有几个面呢?请你们数一数。(提醒幼儿数的过程中既不重复数,又不漏数)
师:长方体有几个面?你是怎样数的?数给大家看?有没有人用不一样的方法数的?数一数。(记录)
7.探索面的形状,发现特殊的长方体
师:长方体的面是什么形状的?(长方形)是不是每个面都是长方形?一起来看一看。有没有其他形状?(请幼儿观察自己的盒子)你发现了什么?(幼儿自由讲述,教师总结)有两个面的是正方形也是长方体,所有的面都是正方形的也是长方体,不过它是特殊的长方体,它还有一个名字叫正方体。
8探索长方体的边和角
师:长方体除了有面还有什么?那有几个角几条边呢?数一数。(幼儿探索并交流,教师记录,引导幼儿使用有效的点数的方法)
(四)总结交流
9.师幼一同小结,梳理所得经验
师:今天我们认识了(长方体),它有(6个面,12条边,8个角),有的面是长方形,有的面是正方形,6个面都是正方形的长方体也叫(正方体)。我们今天观察的小盒子是(长方体),建筑工地的积木有长方体的吗?生活中还有很多东西是长方体的呢,以后你们可以找一找然后和你的好朋友分享。
此次活动中,环节处理较清晰,符合数学活动的基本流程。我在与幼儿交流的时候回答问题的语言不够清楚准确,没有给出明确的答案,影响了幼儿科学探究的兴趣和乐趣。活动中我发现很多幼儿已经有了一些长方体的具体经验,这需要教师加以利用和引导,让幼儿进一步思考和探究,激发他们科学探究的兴趣,这也是科学领域教育教学的重要任务和目地。
长方体的认识教法长方体的认识详案篇二
1.通过学生的自主发现掌握长方体的特征,会辨认长方体。
2.培养学生动手操作的能力,观察能力和抽象、概括能力。
3.精心组织学生活动,激发学生学数学的兴趣,体现数学充满着探索与创新,感受数学的严谨性以及数学结论的确定性。
掌握长方体的特征。
建立立体图形的空间观念。
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体的纸盒。
1.分类、操作、引出新知
(1)教师出示一幅图:你能将它们根据一定标准分类吗?
(2)师生共同概括:像粉笔盒等长方体和正方体,和排球、土豆等都占据一定空间把它们称为立体图形。
请同学们说说在日常生活中哪些物体的形状是长方体。
(板书:长方体的认识)
长方体我们从哪些方面来认识呢?
(4)找实物指出它的长、宽、高。
今天,我们就从面、棱、顶点三个方面来学习长方体的认识。
2.实践操作,探究新知
(1)认识长方体的特征。
那么长方体的特征是什么?请同学们自己数一数、量一量、比——比后,完成表格。
(提示:放手让学生运用各种感官和学习用具独立探究、自主发现面、棱、顶点的知识。)
(2)教师巡回指导,指导要点如下:
①数面、棱、顶点时,如何数比较科学。
②采用多种学习方法。
(提示:如测量、计算、比较及用身体某个部分去接触面、棱、顶点等。)
③独立填写“我的发现”一表。
面
棱长
顶点
(学生在学习时,采用动手实践,自主探索,多种学习方法,既学到了知识又培养了能力。)
汇报:师生共同归纳。
(除了各部分的数量外,还要引导学生认识。)
a.按棱的长度可分为3组,每组内4条棱平等且长度相等;
b.相交于一个顶点的棱有3条,长度不一定相等;
c.相交于一个顶点的3条棱的长度分别叫长方体的长、宽、高;
d.长方体的形状、大小是由长方体的长、宽、高决定的;
e.面的特殊情况。
完成做一做,反馈订正。
小结。
拿一个火柴盒量一量,它的长、宽、高各是多少?然后说一说每个面的长和宽是多少?计算棱长总和。
(1)长方体的六个面一定是长方形。 ( )
(2)长方体的三条棱长的长度分别叫做长方体的长、宽、高。 ( )
(3)有六个面、十二条棱、八个顶点的形体一定是长方形。 ( )
(4)长方形纸是长方形不是长方体。 ( )
(5)有6个面,且6个面都是长方形,它一定是长方体。 ( )
长方体的认识教法长方体的认识详案篇三
九年义务教育六年制小学教学第三册第23页。
1.使学生直观地认识长方体和正方体;
2.能够辨认和区别长方体和正方体;
3.培养学生初步的空间观念。
教学难点:长方体和正方体的辨认和区别。
1.长方体、正方体模型。
2.例1、做一做、长方体、正方体各种位置平面图幻灯片,幻灯机,录音机。
3.长方形、正方形拼组成的机器人及长方体、正方体拼组成的机器人。
学具准备:每个学生准备一个长方体和正方体。
出示长方形、正方形组成的机器人于黑板。
1.初步认识长方体。
①师:这个机器人不仅很有学问,还很神奇。你们看,老师把它的手和脚拼成一个什么样的图形。
(按上下、前后、左右的顺序依次将机器人的手和脚拼成一个长方体。)
师:大家想想看,在我们的生活中,有哪些东西的形状也是这样的?
指名列举。
师:对了,像书、盒子、砖头以及老师手中的模型这样的形状,我们就把它叫做长方体。
出示例1上半部分幻灯,并板书:长方体。
②师:(触摸桌面)大家看这是课桌的一面,我们的长方体也有这样的面。请大家拿起桌面上的长方体,跟老师摸一摸。
带领学生摸长方体的上面。
师:我们刚刚摸过的地方是这个长方体的上面,大家再摸摸看,除了上面,长方体还有哪些面?谁能按一定的顺序说说,让大家更容易记住。
指名回答,板书:上下、前后、左右
师:一共是几个面?板书:6个面。
师:原来长方体有上下、前后、左右一共6个面。
指名摸、数长方体的6个面。
让学生观察长方体每个面的形状。板书:长方形
师(演示):这是上面,和它相对的应该是一一(下面),前面相对的是一一(后面),左面相对的是--(右面)。我们就把上面和下面,前面和后面,左面和右面,叫做相对的面。
板书:相对的面
师:相对的面大小怎样呢?
依次取下上面和下面,前面和后面,左面和右面进行重叠比较,得出结论:相对的面一样大。(板书:一样大)
③出示一个两个相对的面是正方形的长方体。按顺序数出6个面。让学生观察它的每一个面,与第一个长方体进行比较,说说有什么不同。
师:像这样有两个相对的面是正方形,剩下的四个面是长方形的图形也是长方体。
板书:有的两个相对的面是正方形。
④小结:今天机器人带我们认识了长方体,我们知道了长方体有6个面,而且相对的面一样大。不过,有的长方体6个面都是长方形,有的长方体有两个相对的面是正方形,剩下的四个面是长方形。
2.初步认识正方体。
①出示正方体。
师:机器人还要介绍一个新朋友给大家认识,它就是正方体。
板书:正方体
请同桌互相讨论:正方体有几个面,每个面是什么形状的。
取下黑板上机器人。指名回答,板书:6个面 正方体
请一位学生按顺序摸、数正方体的6个面。
②取下6个面,重叠演示6个面的大小一样,板书:一样大
③小结:正方体有6个面,6个面都是正方形的,而且它们一样大。
④让学生列举出形状是正方体的物体。
出示例1下半部分幻灯。
3.认识长方体、正方体的平面图。
师:刚才我们认识的长方体和正方体都是具体的东西。如果把它们画在黑板上、本子上,应该是什么样的呢?请在家打开书第23页看例1。
让学生通过幻灯再认识长方体、正方体其它位置的平面图。
4.总结:这节课,机器人带我们认识了长方体和正方体。(板书课题:长方体、正方体的认识)怎样来区别这两种图形呢?我们先要看看它是否有6个面,如果6个面都是长方形,或者有两个相对的面是正方形,其余4个是长方形,那么它就是长方体。如果6个面全部都是正方形,它就是正方体。
①教师出示一个图形,如果它是长方体,学生就举起桌上的长方体;如果是正方体,就举起正方体。
②教师把辨认的长方体和正方体拼成一个机器人。
师:黑板上的机器人哪去了?原来它看见小朋友学习得那么愉快,就穿上用长方体和正方体做成的衣服,跑到我们的课堂里和大家一起学习了。机器人说,只要大家肯动脑筋、多观察,就一定能学到更多的新知识。
1.第23页做一做,集体订正。
2.练习七第1-5题,集体订正。
[评析:长方体和正方体的认识这节课概念多,内容较为枯燥,为了让低年级学生能愉快地投入学习,根据学生的认识规律,引导学生通过摸、数、说等教学活动,调动各种感官参与学习,使学生不仅理解、掌握了知识,而且增长了智慧,培养了能力,并发展了空间观念。
长方体的认识教法长方体的认识详案篇四
苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。
在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。
师:刚才,同学们动脑筋有条理地数出了长方体有──
生(齐):6个面,12条棱,8个顶点。
师:我们的研究不能满足于“是什么”,还要探究“为什么”。
(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)
(学生仔细打量眼前的长方体模型,积极探索着答案。)
生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。
师:那应该怎样算呢?
生(齐):6×4÷2=12条棱。
师:你现在也能提一些“为什么”的问题吗?
师:问得好!你有答案吗?
生1:我有答案,但想让其他同学回答。
生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。
生1:能不能由棱的条数推算出顶点的个数、面的个数?
生2:由顶点的个数是不是也能推算出面的个数和棱的条数?
师:真会提问题!同学们有兴趣研究吗?
(学生兴致勃勃地研究并汇报了两个问题。)
生1:都先算出了24。这是为什么?
(学生陷入了沉思,不一会儿,陆续举起手。)
生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。
生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。
师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。
……
生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。
师:反过来呢?
生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。
师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。
一、数学学习是经验的,也是推理的
新课程注重向学生提供充分的从事数学活动的机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。
二、空间观念是具象的,也是关系的
一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。
三、课堂思考是个体的,也是群体的
学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。
长方体的认识教法长方体的认识详案篇五
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
(三)渗透事物是相互联系,发展变化的辩证唯物主义观点。
(一)长方体和正方体的特征。
(二)立体图形的识图。
教具准备
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体纸盒。
请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。
教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。
教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。
教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)
学生:不能。
教师:可见立体图形都占有一定的空间。
教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写“正方体”的空)。
1.长方体的特征。
(1)请同学取出自己准备的长方体。
教师:请用手摸一摸长方体是由什么围成的?
学生:面。(教师板书:面)
教师:请用手摸一摸两个面相交处有什么?
学生:有一条边。
教师:这条边称为棱。(板书:棱)
教师:请摸一摸三条棱相交处有什么?
学生:尖。
教师:相交的这点称为顶。(板书:顶。)
(2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。
投影片出示讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?校的位置、长短有什么关系?
③长方体有多少个顶?
学生讨论并归纳后,教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶:8个。
请学生观看动画图(用电脑软件或实物展示)
出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;
第三步:出示8个顶点。
教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)
(3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?
教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?
请几位观察角度不同的同学回答。
教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)
请指出相交于一个顶点的三条棱。
教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)
2.正方体特征。
(1)展示动画图像:(或抽拉投影图)
第一步:长方体中的长边缩短,使长、宽、高相等;
第二步:长方体中的短边伸长,使长、宽、高相等。
教师:看一看新得到的长方体与原来长方体比较有什么变化?
学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。
教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整——加上“正方体”。)
学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
请看动画图像。
(2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。
学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。
教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
学生:正方体是特殊的长方体。
教师板书集合图:
1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2.根据图中数据口答填空。(投影片)
(1)长方体的长是( )厘米,宽( )厘米,高( )厘米。12条棱长的和是( )厘米。
(2)这幅图中的几何体是( )体,12条棱长的和是( )分米。
(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和25厘米。它上面的面长是( )厘米,宽( )厘米,左边的面长( )厘米,宽( )厘米,相交于一个顶点的三条棱长和是( )厘米。
3.判断。正确的在括号里画√,错误的画×。(投影片)
(1)长方体的六个面一定是长方形; ( )
(2)正方体的六个面面积一定相等; ( )
(3)一个长方体(非正方体)最多有四个面面积相等; ( )
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。 ( )
1.说一说长方体和正方体的特征和它们之间的关系。如何看图纸上的立体图。
2.作业:教材p22练习五:1,2,3。
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
本节新课教学分为两大部分。
第一部分教学长方体的特征。共分三个层次进行:让学生通过感官了解长方体的面、棱和顶;利用教具学具和讨论提纲,帮助学生自己去认识并概括出长方体的特征;通过图像和练习,学生会看平面上的立体图,掌握长、宽、高。
第二部分教学正方体的特征。共分两个层次进行:利用长方体长、宽、高的变化来认识正方体的特征,会看立体图;对比长方体和正方体的相同点和不同点,认识它们之间的关系。
扳书设计
长方体的认识教法长方体的认识详案篇六
1.加强数学与生活的联系,不断积累感性经验。
经历观察的过程,积累感性经验。学生在观察物体的基础上,借助看一看、摸一摸等活动,认识长方体的面、棱、顶点,理解它的直观图,这样既遵循了学生的认知规律,又培养了学生的空间观念。
2.教给学生探究知识的方法和策略。
教师鼓励学生自主探究数学知识,这样做的意义是将学生的独立思考、展开想象、自主探究、交流讨论、分析判断等活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣。
课前准备
教师准备 ppt课件 长方体和正方体模型
学生准备 长方体和正方体纸盒 各种规格的长方形和正方形纸板
教学过程
课件出示下面各图:
提问:你们认识这些图形吗?
学生回答后教师指出:长方形、正方形、平行四边形、三角形和梯形都是平面图形。
教师拿出课前准备好的各种实物。提问:这些物体是平面图形吗?(不是)
设计意图:通过复习平面图形,观察、辨认实物,进一步了解图形的分类,交代学习目标,导入新课。
(一)探究长方体的特点。
1.实物感知,形成表象。
师:同学们已经认识了长方体,谁愿意到前面来把长方体形状的物体给大家找出来。
师:除了讲桌上的这些物体,在生活中你还见过哪些长方体形状的物体?
(学生列举出生活中各种长方体形状的`物体)
师:(指讲桌上的物体)为什么说这些物体的形状都是长方体呢?长方体有哪些特点呢?下面我们就一起来探究。
2.面的认识。
(1)学生很容易说出:长方体是由面围成的。(板书:面)
师:(用手摸长方体的一个面)同学们看,这就是长方体的一个面。请同学们拿出自己准备的长方体纸盒,摸一摸长方体纸盒的面。
(2)学生摸完后教师提问:你有什么感觉?
师:现在请你按照一定的顺序数一数,长方体一共有几个面?
(3)指名说出数的结果。(板书:6个)
(启发学生说出:相对的两个面完全相同)
(指名回答后,让学生在教师的长方体上指一指是哪三组)
师:现在,你们拿起自己准备的长方体纸盒进一步观察,看一看长方体的6个面各是什么形状的。
(4)学生通过观察得出两种情况:一种情况是6个面都是长方形(板书:6个面都是长方形);另一种情况是有4个面是长方形,另外两个相对的面是正方形(板书:特殊情况有两个相对的面是正方形)。
(5)让学生分组测量长方体前后、左右、上下面的长和宽,引导学生发现:长方体相对的面的长和宽分别相等。
(启发学生说出:相对的面的形状、大小完全相同)
师:是不是这样呢?请同学们看大屏幕,我们来验证一下。
(6)课件演示:屏幕上先出现6个长方形,再慢慢围成一个长方体,并将围成的长方体旋转一周,然后依次抽象出长方体的后面、下面、左面,再分别与它们相对的面比较,使学生直观、形象地看到长方体相对的面完全相同。(板书:长方体相对的面完全相同)
(7)师生共同总结长方体面的特点。
3.棱的认识。
师:现在我们继续观察,同学们用手摸一摸长方体两个面相交的地方有什么?(学生可能说有一条边)
(1)课件演示:屏幕上先分别闪动长方体的前面和上面,再闪动两个面相交的边。
(2)教师指出:我们把两个面相交的边叫作棱。(板书:棱)
师:按照一定的顺序数一数,长方体一共有多少条棱?
长方体的认识教法长方体的认识详案篇七
1、认识长方体与正方体,能区分长方体与正方体。
2、感受行与体的不同,发展空间知觉。
3、培养动手动脑及合作的能力。
1、长方体纸盒若干个、画有花的长方形若干;2、正方体、长方体物品若干;3、幻灯片。
一、认识长方体1、观察桌面上的操作材料小朋友们,你们看看桌子上有什么呀?今天老师要请小朋友用这些东西来玩个"找朋友"的。
2、教师讲解操作要求这个纸盒老师给它们穿上了漂亮的衣服,等会儿请小朋友们先将纸盒的衣服"脱"下来,数一数它总共有几件衣服,再帮衣服找出和它自己同样大小的衣服做好朋友,然后请你把这对好朋友身上的花涂上相同的颜色,涂好后再将这些衣服穿回到纸盒的身上。
3、幼儿操作,教师指导。
4、分析幼儿操作结果(1)将每组幼儿的长方体展示在上面,教师与幼儿一起来观察。
(3)你们看看这6个面谁和谁是好朋友?也就是它俩的大小是一样的?(教师将6个面是一对的两两放在一起)(4)现在我将它们都穿回去,这个面在这里,这个面……(5)上下两个面是一样大的,左右两个是一样大的,前后两个是一样大的。
5、教师小结:像纸巾盒、牛奶盒这样的盒子,有6个面,每个面都是长方形,相对的'两个面大小一样的形体我们叫长方体(出示字体:长方体)二、认识正方体1、(教师出示正方体)小朋友们,你们看这个是长方体吗?是的请举手。
2、那它倒底是不是呢?我们来看看,一起数数它有几个面?(6个),它每个面都是正方形,这6个正方形它们的大小都一样,像这样有6个面,每个面都是正方形,而且这6个正方形的大小都一样,这样的形体我们叫正方体(出示正方体字体),正方体也是长方体。
三、区分正方体和长方体1、小朋友们,刚才我们认识了长方体和正方体,老师在后面为小朋友们准备了很多的物体,请你到后面去挑选一个长方体或是正方体,看哪个小朋友能又快又好的挑来回到自己的座位上来。
2、提问个别小朋友他挑了什么,是什么体?
3、请幼儿将手中的长方体和正方体分别放入两筐子。
2、观看放映幻灯片。
五、延伸活动(教师出示有两个面是正方形的长方体)老师这里还有一个长方体,这个长方体它这两个面是正方形,请小朋友回去后可以为它也去穿穿衣服,你也会发现一个秘密。
长方体的认识教法长方体的认识详案篇八
长方体和正方体是小学数学五年级上册的内容,在学习本节课之前,学生已经学习了很多的平面图形的,比如长方形,正方形、三角形、平行四边形等。本节课的学习即与之前学习过的平面图形有着密切联系,但又有着本质的不同。密切的联系在于研究方法、研究的切入点有相同的地方。本质的区别在于长方体和正方体是学生在小学阶段中第一次全面、深刻、系统的学习立体空间图形的开始。由平面图形扩展到立体图形是学生空间观念的一次飞跃。学习长方体和正方体有助于学生空间观念的形成,这也为学生今后学习其他立体图形以及立体图形表面积、体积的计算等打下坚实的基础。因此本节课的地位显得至关重要!
知识与能力:借助具体的实物和模型,掌握长方体和正方体各部分的名称、特征,以及长方体和正方体的联系。
过程和方法:通过观察思考、动手操作,培养学生的空间观念,发展学生的立体思维。
情感态度和价值观:在总结、归纳长方体和正方体特征的过程中获得积极的学习体验。
理解和掌握长方体和正方体,面和棱的特征
在小学低年级阶段,学生已经初步认识了长方体和正方体,并且在生活中也会经常碰到长方体和正方体。虽然学生没有系统的学习过长方体和正方体,但在平面图形中很多研究方法学生已经掌握,比如研究平面图形,我们一般从点、边、角等方面来进行研究。
主要采用教师引导,学生动手实践、自主探索、合作交流的方法。
多媒体课件、长方体正方体实物模型、研究单
(一)情境导入
学生一般能够正确识别长方体和正方体。这是我们继续抛出一个问题?生活中你在哪些地方还见到过长方体和正方体?我想学生的回答应该是五花八门,比如魔方、快递包装盒、牛奶盒、铅笔盒、橡皮等等,或许学生描述不是那么精确,比有的如铅笔盒,它并不是一个平平的面,而是一个曲面,但是我们这时不要着急否定学生,因为学生已经从以往的平面图形走到了现实中的立体图形,这是一个大的进步,我们的应当予以肯定。对于那些不精确的描述,我们会在最后进行讨论,让学生根据本节课学习到的知识进行判断。
(二)讲授新知
我们知道,数学来源于生活,同样的道理,长方体和正方体也是来源于生活中的实际物体,根据学生认知发展的规律,我们应当从实物中提炼出模型,因此我们可以研究长方体和正方体的模型,当然理想条件下每个同学最好都有一份不同的长方体和正方体的模型。第一步就让学生直观感知长方体和正方体。让学生动手摸一摸、闭上眼睛想一想,今天我们学习的长方体和正方体与我们以前学习过的平面图形到底有什么不同?通过直观的感知,学生的回答或许不是那么精确,比如,平面图形有一个面,立体图形有好多个面;再比如平面图形是画在纸上的,而立体图形是现实生活中的等。我想这足以可以说明学生已经开始进行了立体图形的思考。
这时进一步追问,假如让你来描述一下长方体和正方体,你觉得应该从哪些方面来介绍?老师可以引导学生回顾以前学习过的平面图形,帮助学生梳理,研究平面图形时,我们可以从顶点、边、角等几方面来进行研究。同样的道理在认识长方体,正方体等立体图形时我们也可以选取几个研究点来进行探讨,比如面,棱(即面与面相交的线段叫做棱),顶点(即三条棱相交的点叫做顶点)当然,这些名称的认识可以是学生课前预习,也可以作为老师的新知讲授。当学生了解长方体和正方体各部分名称后,可以设计一个环节,让同桌两个相互说一说,加以巩固各部分的名称。
长方体的特征,在前面我们已经确定了可以从顶点,面以及棱三个方面来进行探究。
顶点的数量很好数,是8个顶点,当然在数的过程中要注意引导学生有顺序的来数。研究的重点在于面和棱。这时我想完全可以把问题抛给学生进行小组讨论。在小组讨论开始之前,我们要给学生提供几个问题:第一,长方体有几个面,面与面之间有没有什么特点?你是怎么验证的?第二,长方体有几条棱,棱与棱之间有没有什么特点?你又是通过什么方法来验证的?带着这两个问题同学们进行小组合作。并完成研究表格。
小讨论结束,学生在进行汇报交流的时候,教师应当引导学生,在去数面的个数的时候,怎么才能做到不重复、不遗漏。我们可以上下、前后、左右来数。一共有6个面。对于面的特点,我们可以从面的位置、面的形状、面的大小也就是面积三个方面来描述,最终得出结论:长方体有6个面,每个面都是长方形、相对面的大小、形状完全相同。(当然对于每个面都是长方形这个说法在后面的练习中会进行特殊的论述)
在去研究长方体棱的时候可以让学生模仿刚才研究面的过程:比如,长方体一共有几条棱,怎样数才能做到不重复不遗漏?让学生展开充分的交流、讨论。有的学生会想到一个顶点对应3条棱,长方体一共有8个顶点,共计24条棱,但是在数的时候所有的棱都重复计算了一遍,最后要减半,所以长方体一共有12条棱。还有的同学可能会想到按照棱的长度去数,一共有三组,每组有四条棱长度相等,共计12条棱。还有的同学可能是按照空间位置来去数,这时可以让这位同学到讲台上用不同颜色的粉笔来进行标注,通过空间位置的划分,可以分为3组,每组有4条,共计12条棱。每种方法都可以,但是我们要鼓励学生运用第3种方法,因为第三种方法学生是真正站到立体空间的角度去思考问题,要予以肯定。这时,我们可以设计一个环节,同桌两个彼此不重复、不遗漏的数一数各自长方体的棱并说一说每组棱有什么特点。最后我们得出结论:长方体有12条棱,可以分为3组,每组相对的4条棱长度相等。
《长方体和正方体的认识》说课稿二的棱叫做长,把水平方向较短的棱叫做宽,把垂直方向的棱叫做高。讲授完长宽高后,可以让学生到讲台上来说一说自己长方体模型的长宽高。让学生知道,长方体的长宽高并不是固定的,而是随着摆放的位置进行变化的。
在研究正方体特征时,我们可以让学生自己根据刚才研究长方体的方法去研究正方体。完成研究表格,并对比一下,长方体和正方体有什么相同之处和不同之处。通过学生自己动手操作、动脑思考得出结论:正方体也有8个顶点、6个面,12条棱。但是正方体的6个面大小、形状完全相同。并且正方体的12条棱长度也完全相同。这正是长方体与正方体的的不同之处。本环节的设计重点在于研究方法的迁移,以及对长方体和正方体的相同之处和不同之处进行比较。
最后我们要让学生明白长方体和正方体之间的包含关系:在平面图形中,我们学习过正方形是特殊的长方形,只不过正方形的长和宽相等,我们称之为边长。这里的正方体是不是特殊的长方体呢?抛出这个问题让学生进行思考?其实,正方体就是一种特殊的长方体,只不过正方体的长宽高都相等而已,我们把它称为棱长。本环节的设计目的是让学生明白,在集合范围内,正方体是一种特殊的长方体。二者是一种包含的关系。
到此本节课的新授内容以基本结束,根据练习的层次性,我设计了以下几个练习。
最后,让学生思考两个问题:
1,生活中的铅笔盒、冰箱等是不是标准的长方体
2,是不是所有的长方体的面都是长方形。
这两个问题留作学生课下思考。
略

一键复制