作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
沪科版初中数学七年级教案篇一
教学目标
1.使学生正确理解数轴的意义,掌握数轴的三要素;
2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:正确理解有理数与数轴上点的对应关系.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例 变式练习
例1 画一个数轴,并在数轴上画出表示下列各数的点:
例2 指出数轴上a,b,c,d,e各点分别表示什么数.
课堂练习
示出来.
2.说出下面数轴上a,b,c,d,o,m各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
五、作业
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)a,h,d,e,o各点分别表示什么数?
2.在下面数轴上,a,b,c,d各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
课堂教学设计说明
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.
沪科版初中数学七年级教案篇二
教学目标
1.会解简易方程,并能用简易方程解简单的应用题;
2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;
3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。
教学建议
一、教学重点、难点
重点:简易方程的解法;
难点:根据实际问题中的数量关系正确地列出方程并求解。
二、重点、难点分析
解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。
判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。
三、知识结构
导入 方程的概念 解简易方程 利用简易方程解应用题。
四、教法建议
(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。
(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。
(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。
(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。
五、列简易方程解应用题
列简易方程解应用题的一般步骤
(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.
(2)找出能够表示应用题全部含义的一个相等关系.
(3)根据这个相等关系列出需要的代数式,从而列出方程.
(4)解这个方程,求出未知数的值.
(5)写出答案(包括单位名称).
概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.
教学设计示例
简易方程(一)
教学目标
1.能解简易方程,并能用简易方程解简单的应用题。
2.初步培养学生方程的思想及分析解决问题的能力。
教学重点和难点
重点:简易方程的解法和根据实际问题列出方程。
难点:正确地列出方程。
课堂教学过程设计
一、从学生原有的认知结构提出问题
1.针对以往学过的一些知识,教师请学生回答下列问题:
(1)什么叫等式?等式的两个性质是什么?
(2)下列等式中x取什么数值时,等式能够成立?
2.在学生回答完上述问题的基础上,引出课题
在小学学习方程时,学生们已知有关方程的三个重要概念,即方程、方程的解和解方程.现在学习了等式之后,我们就可以更深刻、更全面地理解这些概念,并同时板书课题:简易方程.
二、讲授新课
1.方程
在等式4+x=7中,我们将字母x称为未知数,或者说是待定的数.像这样含有未知数的等式,称为方程.并板书方程定义.
例1 (投影)判断下列各式是否为方程,如果是,指出已知数和未知数;如果不是,说明为什么.
(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.
分析:本题在解答时需注意两点:一是已知数应包括它的符号在内;二是未知数的系数若是1,这个省写的1也可看作已知数.
(本题的解答应由学生口述,教师利用投影片打出来完成)
2.简易方程
简易方程这一小节的前面主要是复习、归纳小学学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。
例2 解下列方程:
(1) (2)
分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。
解(1)方程两边都减去 ,得
两边都乘以3,得 。
(2)方程两边都加上6,得 。
方程两边都乘以 ,得 ,即 。
注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.
(2)解简易方程时,不要求写出检验这一步.
例3 甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?
分析此题必须弄清:一、甲、乙两队原来各有多少人;二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);三、题中的等量关系是:变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.
解 设从甲队调给乙队x人,
则变动后甲队有 人,乙队有 人,根据题意,得:
答:从甲队调给乙队24人。
三、课堂练习(投影)
1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.
(1)3y-1=2y; (2)3+4x+5x2; (3)7×8=8×7 (4)6=0.
2.根据条件列出方程:
(l)某数的一半比某数的3倍大4;
(2)某数比它的平方小42.
3.检验下列各小题括号里的数是不是它前面的方程的解:
四、师生共同小结
1.请学生回答以下问题:
(1)本节课学习了哪些内容?
(2)方程与代数式,方程与等式的区别是什么?
(3)如何列方程?
2.教师在学生回答完上述问题的基础上,应指出:
(1)方程、等式、代数式,这三者的定义是正确区分它们的标准;
(2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的.而解方程是指确定方程的解的过程,是一个变形过程.
五、作业
1.根据所给条件列出方程:
(1)某数与6的和的3倍等于21;
(2)某数的7倍比某数大5;
(3)某数与3的和的平方等于这数的15倍减去5;
(4)矩形的周长是40,长比宽多10,求矩形的长与宽;
(5)三个连续整数之和为75,求这三个数.
2.检验下列各小题括号里的数是否是它前面的方程的解:
(3)x(x+1)=12,(x=3,x=4).
沪科版初中数学七年级教案篇三
相交线
课型:新授课 备课人:徐新齐 审核人:霍红超
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.
学生欣赏图片,阅读其中的文字.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.
三、 问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线ab、cd相交于点o,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
∠aoc和∠boc有一条公共边oc,它们的另一边互为反向延长线.
∠aoc和∠bod有公共的顶点o,而是∠aoc的两边分别是∠bod两边的反向延长线.
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.
(3).概括形成邻补角、对顶角概念.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
2.:判断下列图中是否存在对顶角.
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )
二、填空题:
1.如图1,直线ab、cd、ef相交于点o,∠boe的对顶角是_______,∠cof 的邻补角是________.若∠aoc:∠aoe=2:3,∠eod=130°,则∠boc=_________.
(1) (2)
2.如图2,直线ab、cd相交于点o,∠coe=90°,∠aoc=30°,∠fob=90°, 则∠eof=________.
三、解答题:
1.如图,直线ab、cd相交于点o.
(1)若∠aoc+∠bod=100°,求各角的度数.
(2)若∠boc比∠aoc的2倍多33°,求各角的度数.毛
2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?
沪科版初中数学七年级教案篇四
教师在教学之后,要对自己的教学做出客观的分析和评价,总结出本节课的两点和成功的地方。如教学活动设计合理,教法使用恰当,引人入胜等。今天小编在这里给大家分享一些有关于最新沪科版七年级数学教案案例,希望可以帮助到大家。
小数乘分数
教学内容:
教材第8页例5,做一做,练习二1~4。
教学目标:
1、在解决问题的过程中学习并掌握小数乘分数的计算方法。
2、经历小数乘分数的计算方法的探究过程。
3、体会算法多样化的数学思想,提高计算能力。
教学重点:
掌握小数乘分数的计算方法。
教学难点:
灵活选择不同的计算方法,熟练地进行小数乘分数的计算。
教学过程:
一、复习导入。
1、计算
交流时让学生说一说计算方法和计算过程中的约分方法。
2、把下面的小数化成分数,分数化成小数。
1.2( ) 0.4( ) 3.5( ) 1.25( )
让学生说一说怎样将一个小数化成分数?
二、探索新知
1、例题5:松鼠的尾巴长度约占身体长度的 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。
(1)提取题中的已知条件和所求问题
已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。
所求问题:松鼠欢欢的尾巴有多长?
启发观察,这个算式和我们前面学习的分数乘法有什么不同?
(3)探讨小数乘分数的计算方法。
提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。
学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。
小数化成分数: = = (分米)
分数化成小数: =2.1×0.75=1.575(分米)
3、解决问题二。
(1)出示问题:松鼠乐乐的尾巴有多长?
(2)学生独立解答。
组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。
小数和分母约分: (分米)
4、观察比较,回顾思考。
提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)
三、巩固练习。
1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。
2、教材第10页“练习二”第2题。
3、教材第10页“练习二”第3题。
分数乘整数
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数
1、教学分数乘整数的意义。
(1)分析演示
题中的:“小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个”意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位“1”)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位“1”);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和12×5两种算式异同
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
教学目标:
1、知识与技能 使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算;使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
2、过程与方法 回顾、整理、练习、订正。
3、情感态度与价值观 培养学生良好的计算习惯和分析解决问题的能力。
教学重点:
引导学生找准单位“1”,分析应用题的数量关系。
教学难点:
让学生正确、独立地分析应用题的数量关系。
教具运用:
课件
教学过程:
一、创设情境,导入复习。
1、学生独立解决。
2、汇报交流做法。
3、提示课题:分数乘法的整理和复习
二、回顾整理,建构网络。
1、让学生说一说这个单元你学到了哪些知识?(小组内说一说,适当的时机师生进行点评)
2、展示自己整理好的分数乘法的知识。
3、小组合作,优化整理。(课件演示)
分数乘整数
求几个相同分数和的简便运算
计算方法:分子相乘的积作分子,分母相乘的积作分母。(能约分的先约分再计算)
一个数乘分数
求一个数的几分之几是多少
分数乘加、乘减及乘法运算定律的灵活运用
灵活运用运算定律,可以使计算简便。
乘法交换律:a.b=b.a;
乘法结合律(a.b).c=a.(b.c);
乘法分配律(a+b)。c=a.c+ b.c;
乘法分配律的逆运算:a.c+b.c=(a+b)。c
解决问题
1、求一个数的几分之几 是多少。
2、稍复杂的求一个数的几分之几是多少。
关系式:单位“1”的量(一个数)×问题所对应的几分之几=所求问题
三、自主检评,完善提高。
1、计算下面各题,说一说分数乘法是怎样计算的?
2、下面各题怎样计算比较简便?
四、课堂小结。
教学内容:
人教版小学数学教材六年级上册第54页例2及相关练习。
教学目标:
1.能在实例的分析中理解按比分配的实际意义。
2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
教学重点:
理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
教学难点:
自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
教学准备:
课件。
教学过程:
一、情境导入
课件出示:女生与男生的人数比是5:7。
师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?
【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。
二、实例探究
(一)自主探索
1.出示:六(2)班一共有48人,女生与男生的人数比是5:7。
2.学生独立尝试。
3.同桌交流。
师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)
4.汇报
请不同做法的学生上台板演,交流汇报。
预设(1):48÷(5+7)=4(人);
女生:4×5=20(人);
男生:4×7=28(人)。
师:还有不同的解决方法吗?
预设(2):女生: (人);
男生: (人)。
师:这种方法中, 是什么意思? 呢?
5.小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。
【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。
(二)揭示课题
师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)
(三)实践尝试
出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。
1.阅读与理解。
浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)
师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)
2.分析与解答。
预设(1):每份是500÷5=100(ml),浓缩液有100×1=100(ml),水有100×4=400(ml)。
师:这里的5表示什么?(把总体积平均分成5份。)
预设(2):浓缩液有 (ml),水有 (ml)。
师: 表示什么?(浓缩液占总体积的 ;)
呢?(水占总体积的 。)
3.回顾与反思。
师:可以用怎样的方法对结果进行验证?
预设:看浓缩液与水的比是不是等于1:4。
小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。
【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
三、实践应用
(一)基本练习
1.师:打开教材第55页,看第一题。
(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。
(2)交流:说说你的方法。
2.出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。
师:请你来设计一下,可以怎么分配?
预设一:1:1。
师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)
师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
对于其余各种分配方法,都让学生快速算一算再交流。
(二)发展提高
1.师:增加点难度行不行?我把这一题变一下。
(1)比较:这一题和前几题相比,有什么不同?
(3)学生尝试。
(4)交流算法。
师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。
师:这几位同学的方法有什么共同点?有什么不同点?
(1)比较分析
师:我们可以先求出比,再按比进行分配。
(2)学生独立尝试,交流算法。
(三)小结
师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。
【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。
四、课堂总结
1.师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)
2.课外延伸。
师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。
【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。
教学目标:
1、在解决问题的过程中,探索分数除以整数的计算方法,并能正确的进行计算。
2、在探索分数除以整数计算方法的过程中,体验算法的多样性,养成独立思考的习惯,促进个性化学习。
3、在解决现实问题的过程中,感受数学与生活的密切联系,体验学数学,用数学的乐趣。
教学过程:
一、创设情境,提出问题。
师:同学们,我们学校设立了许多课外兴趣小组,同学们在课余时间可以根据自己的兴趣爱好参加小组的活动。今天我们一起走进布艺兴趣小组,看看那里的同学给我们提出了哪些数学问题。
师:看大屏幕,从情境图中你找到了哪些数学信息?
生:布艺兴趣小组的同学要用9/10米的布给小猴做衣服。如果做背心,可以做3件;如果做裤子,可以做2条。
师:根据这些信息,你能提出什么数学问题?
生1:做一件背心需要花布多少米?
生2:做一条裤子需要花布多少米?
(教师根据学生的提问,有选择的进行板书)
二、自主探索,获取新知
1、独立思考、自主探究。
师:我们先看第一个问题 “做一件背心需要花布多少米?”怎样列算式?
生1:9/10÷3=
师:为什么用除法?
生1:把9/10平均分成3份,求1份是多少,所以用除法。
师:谁还能再说一遍?
生重复。
师:9/10÷3结果是多少呢?请在自己的练习本写一写、画一画,算一算。
生自主操作,师适时巡视指导,找出两位同学上台板演。
2、合作交流,解决问题。
师:将你的想法和同桌交流一下。
生交流。
师:我们来看几位同学的方法。
(投影展示,画线段图的方法)
师:我们先看第一位同学的方法,这是哪位同学的,你能来介绍一下吗?
生:(画线段图的方法)把9/10米平均分成3份,每份是3/10米。
生:把9/10米平均分成3份,每份是3/10米。
师:不管是画线段图还是用长方形来表示,我们都可以得到每份是3/10米。
板书方法:画线段图。
师:我们再来看黑板上这两位同学的(学生板演),请这位同学来介绍一下你的做法。
生:9/10÷3=9÷3/10=3/10(米)
师:谁能再重复一遍?生重复。
师:我们可以用平均分的思想直接进行计算。(板书:平均分的方法)
生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
生似懂非懂。
师:你们能明白吗?我们结合这条形图来看一下,(出示课件)。
师:把条形图平均分成3份,一份占多少?
生:1/3。
师:也就是求什么/
生:也就是求9/10米的1/3。
师:我们可以怎样计算?
生:9/10×1/3
师:看一下算式?有什么变化?
生1:前面是除法,后面是乘法。
生2:3和1/3互为倒数
师:也就是除法转化成了乘法。(板书:转化)
师:谁能再说一说这种方法?
师:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法计算,每段是9/10×1/3=3/10(米)。
师:这就是第三种方法,利用乘法的意义进行计算。(板书:乘法的意义)
师:除了这几种方法,你还有哪些办法?
生:转化成小数来计算。
师:说一下
生:9/10米化成小数0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。
师板书:9/10÷3=0.9÷3=0.3(米)
生1:我认为第三种方法比较好,因为算起来比较简便。
生2:我认为第三种方法比较好,因为第二种方法只适用于能出开的情况。
师:说得非常好,到底他说的对不对,等会我们来验证一下。
3、选择算法,解决问题。
师:同学们,看来大家都已经有自己喜欢的方法了,我们来看第二个问题“做一条裤子需要花布多少米?”用你喜欢的方法独立完成。
(让学生独立列式,教师巡回指导,了解学生情况,找一位同学进行板演)
9/10÷2=9/10×1/2=9/20(米)
师:我们来看这位同学的,你们都和这位同学一样吗?谁来说说这种方法?
生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法来计算。
师:谁能再说一遍
生重复。
师:看算式,我们把除法转化成了乘法来计算。看来大家都觉得这种方法比较简单。
4、归纳概括,推广应用。
生:乘法
师:看圈起来的两个数字,有什么关系?
生1:倒数
生2:互为倒数
生:分数除以整数等于分数乘这个整数的倒数。(师板书)
师:谁能再说一遍?
生重复,全班同学一块交流。
三、巩固练习,加深理解
1、自主练习1
先让学生独立填写,然后组织交流。
交流时让学生说说自己的算法,体会到此题分数的分子都能被除数整除,所以采用分子除以除数的方法相对简捷。
2、自主练习2
让学生运用分数除以整数的计算方法连一连。独立完成,组织交流。
首先让学生观察第一行算式与第二行算式的特点以及之间的关系,从而悟出此题的意图,学生就可以顺利地利用分数除以整数的计算方法得出应该连的相应算式。
3、自主练习5
独立完成,投影展示交流。(两种方法,直接去除或者转化成乘法计算)
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
4、自主练习4
独立完成,板演交流
此题把解决问题和计算知识的练习融为一体,实现解决问题能力的培养与基础知识和基本技能的学习同步发展的教学目标。
四、课堂小结
师:这节课我们主要学习了什么知识?
生:分数除以整数(板书)
师:通过这节课的学习,你有什么收获?
生汇报。
沪科版初中数学七年级教案篇五
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察→分析→推导→计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书: 公式
师:小学里学过哪些面积公式?
板书: s = ah
附图
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积s。
师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“m”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.
(出示投影3)
例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积
学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.
评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.
2.本题实际上是由圆的面积公式推导出环形面积公式.
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.
测试反馈,巩固练习
(出示投影4)
1.计算底 ,高 的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t
3.已知圆的半径 , ,求圆的周长c和面积s
4.从a地到b地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。
(1)求a地到b地所用的时间公式。
(2)若 千米/时, 千米/时,求从a地到b地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.
八、随堂练习
(一)填空
1.圆的半径为r,它的面积 ________,周长 _____________
2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________
3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________
(二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积v,如果 , , ,v是多少?
九、布置作业
(一)必做题课本第22页1、2、3第23页b组1
(二)选做题课本第22页5b组2
十、板书设计
附:随堂练习答案
(一)1. 2. 3.
(二)
作业答案
必做题1.
2. 3.
.
选做题5.
探究活动
根据给出的数据推导公式。
沪科版初中数学七年级教案篇六
教学目标
1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;
2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
教学重点和难点
重点和难点:正确地求出代数式的值
课堂教学过程设计
一、从学生原有的认识结构提出问题
1用代数式表示:(投影)
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%
2用语言叙述代数式2n+10的意义
3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)
某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容
二、师生共同研究代数式的值的意义
1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值
2结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)
例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代数式中省略乘号,代入后需添上乘号
例2 根据下面a,b的值,求代数式a2- 的值
(1)a=4,b=12,(2)a=1 ,b=1
解:(1)当a=4,b=12时,
a2- =42- =16-3=13;
(2)当a=1 ,b=1时,
a2- = - =
注意(1)如果字母取值是分数,作乘方运算时要加括号;
(2)注意书写格式,“当……时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x2-1的值;
(2)当x= ,y= 时,求代数式x(x-y)的值
2当a= ,b= 时,求下列代数式的值:
(1)(a+b)2; (2)(a-b)2
3当x=5,y=3时,求代数式 的值
答案:1.(1)3; (2) ; 2.(1) ;(2) ; 3. .
四、师生共同小结
首先,请学生回答下面问题:
1本节课学习了哪些内容?
2求代数式的值应分哪几步?
3在“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:
(1)c-(c-a)(c-b); (2) .
沪科版初中数学七年级教案篇七
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程(师生活动) 设计理念
探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进行判断。
集合的概念不必深入展开。
创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数 这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业 1, 必做题:教科书第18页习题1.2第1题
2, 教师自行准备
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概
念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进
行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分
类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
沪科版初中数学七年级教案篇八
教学目的
借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。
重点、难点
1.重点:列一元一次方程解决有关行程问题。
2.难点:间接设未知数。
教学过程
一、复习
1.列一元一次方程解应用题的一般步骤和方法是什么?
2.行程问题中的基本数量关系是什么?
路程=速度×时间 速度=路程 / 时间
二、新授
例1.小张和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷,在行驶了三分之一路程后,估计继续乘公共汽车将会在火车开车后半小时到达火车站,随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站,已知公共汽车的平均速度是40千米/时,问小张家到火车站有多远?
画“线段图”分析, 若直接设元,设小张家到火车站的路程为x千米。
1.坐公共汽车行了多少路程?乘的士行了多少路程?
2.乘公共汽车用了多少时间,乘出租车用了多少时间?
3.如果都乘公共汽车到火车站要多少时间?
4,等量关系是什么?
如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。
可设公共汽车从小张家到火车站要x小时。
设未知数的方法不同,所列方程的复杂程度一般也不同,因此在设未知数时要有所选择。
三、巩固练习
教科书第17页练习1、2。
四、小结
有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。
四、作业
教科书习题6.3.2,第1至5题。
沪科版初中数学七年级教案篇九
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
三要素 | 应用 | ||
数形结合 | |||
规定了原点、正方向、单位长度的直线叫
| 原 点 正方向 单位长度 | 比较有理数大小,上右边的数总比左边的数要大 | 在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。 |
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做.
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.
以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“o”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示.
2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).
a点表示-4; b点表示-1.5;
o点表示0; c点表示3.5;
d点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
教学设计示例

一键复制